Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Testing high-resolution optical spectrum analyzers for characterization analog optical links with external modulation

https://doi.org/10.32446/0368-1025it.2022-12-40-45

Abstract

The characterization of analog optical links is considered and it is noted that the study, accounting and reduction of nonlinearities introduced by the elements of the optical link into the output signal during photodetection are of particular practical interest. Methods for analyzing nonlinear distortions of analog optical paths with external modulation are presented and it is proposed to use high-resolution optical spectrum analyzers for their characterization. The analysis methods use the results of measurements of the optical spectrum, which directly characterize the optical signal of the link without taking into account the influence of nonlinearities introduced during photodetection. An analytical model of the process of modulation of monochromatic light radiation by a two-tone radio frequency signal using an electro-optical Mach-Zehnder modulator is presented. The relationship between the nonlinear spectral components of the optical modulated and radio frequency signals at the photodetector output is considered. The optical and radio frequency spectra of AOL signals were experimentally studied on a specially assembled measuring stand. The results of experiments on measuring SFDR of analog optical paths using high-resolution radio frequency and optical spectrum analyzers are presented. Possible reasons for the degradation of the SFDR during photodetection are discussed. Using an analytical model of nonlinearities of the Mach-Zehnder modulator, the contribution of the nonlinearity of photodetection to the distortion of the output signal of the optical link is experimentally estimated and the differences in the power of intermodulation products for microwave photodiodes of two types are demonstrated.

About the Authors

V. A. Nebavskiy
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vsevolod A. Nebavskiy

 Moscow



R. S. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

 Rostislav S. Starikov

 Moscow



References

1. Cox C. H., Analog Optical Links, Cambridge, Cambridge University Press, 2009, 288 p.

2. Urick V. J., Mckinney J. D., Williams K. J., Fundamentals of microwave photonics, NY, Wiley, 2015, 496 p.

3. Urick V. J. et al., Analog fi ber-optic links employing cascaded phase modulation stages, Microw. Opt. Technol. Lett., 2012, vol. 54, рр. 2797–2801.

4. Dai Y. et al., Opt. Express, 2017, vol. 25, no. 17, рр. 20770– 20779. https://doi.org/10.1364/OE.25.020770

5. Zhu G., Liu W., Fetterman H. R., IEEE Photonics Technol. Lett., 2009, vol. 21, no. 21, рр. 1627–1629. https://doi.org/10.1109/LPT.2009.2031166

6. Li S. et al., IEEE Photonics Technol. Lett., 2010, vol. 22, no. 24, рр. 1775–1777. https://doi.org/10.1109/LPT.2010.2082516

7. Li J. et al., Opt. Lett., 2013, vol. 38, no. 21, рр. 4285–4287. https://doi.org/10.1364/OL.38.004285

8. Chan E. H. W., Appl. Opt., 2014. vol. 53, no. 7, рр. 1306–1314. https://doi.org/10.1364/AO.53.001306

9. Liang D. et al., IEEE Photonics Technol. Lett., 2015, vol. 27, no. 15, рр. 1639–1641. https://doi.org/10.1109/LPT.2015.2433015

10. Singh S., Arya S. K., Singla S., Wireless Pers. Commun., 2020, vol. 114, no. 1, рр. 85–92. https://doi.org/10.1007/s11277-020-07351-w

11. Shaqiri S., Haxha S., Mirza T. N., Opt. Express, 2020, vol. 28, no. 12, 17521. https://doi.org/10.1364/OE.394461

12. Shaqiri S., Haxha S., Elsevier Optik, 2020, vol. 204, 164103. https://doi.org/10.1016/j.ijleo.2019.164103

13. Mirza T. N., Haxha S., Dayoub I., IEEE Systems Journal, 2021, vol. 15, no. 4. https://doi.org/10.1109/JSYST.2021.3051394

14. Prescod A., Dingel B.B., Madamopoulos N., Proceedings SPIE OPTO: Integrated Optoelectronic Devices, 2009, San Jose, USА, 2009, vol. 7234, Broadband Access Communication Technologies III, 72340E. https://doi.org/10.1117/12.808230

15. Dingel B., Madamopoulos N., Prescod A., Opt. Commun. Technol. InTech 2017. https://doi.org/10.5772/intechopen.69262

16. Dingel B. et al., Optics Communications, 2011, vol. 284, no. 24, рр. 5578–5587. https://doi.org/10.1016/j.optcom.2011.08.030

17. Небавский В. А., Стариков Р. С., Черёмхин П. А. Методы линеаризации аналоговых оптических трактов // Успехи современной радиоэлектроники. 2021. T. 75. № 12. С. 42–62. [Nebavskiy V. A., Starikov R. S., Cheremkhin P. A., Linearization methods for analog optical paths, Journal Achievements of Modern Radioelectronics, 2021, no. 12, pp. 42–62. (In Russ.)]

18. Prescod A. et al., IEE E Photonics Technol. Lett., 2010, vol. 22, no. 17, рр. 1297–1299. https://doi.org/10.1109/LPT.2010.2053842

19. Kundert K., Accurate and Rapid Measurement of IP 2 and IP 3, The Designer’s Guide Community, 2002, 13 р


Review

For citations:


Nebavskiy V.A., Starikov R.S. Testing high-resolution optical spectrum analyzers for characterization analog optical links with external modulation. Izmeritel`naya Tekhnika. 2022;(12):40-45. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-12-40-45

Views: 150


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)