

Measurement of the refractive index using a modified constant deviation method
https://doi.org/10.32446/0368-1025it.2022-12-35-39
Abstract
Goniometric methods for measuring the refractive index of optically transparent materials are considered. Proposed a modified constant deviation method for measuring the refractive index of a triangular prism. The proposed modification does not require measuring the refractive angle of the prism, which simplifies the measurement process compared to the widely used methods of minimum deviation and autocollimation. To implement the method, a goniometric system was used, designed to measure angles formed by flat surfaces of objects. To obtain the reflection of the refracted beam, a fixed mirror was used, and the refractive index of the prism material was calculated from the solution of a system of equations. The results of an experimental study of a triangular prism made of optical glass using the proposed method and their comparison with results obtained using the method of minimum deviation are presented. This method can be used to study trihedral prisms made of optically transparent materials, as well as liquid optically transparent substances placed in a hollow trihedral prism.
About the Authors
A. I. YurinRussian Federation
Alexander I. Yurin
Moscow
G. N. Vishnyakov
Russian Federation
Gennady N. Vishnyakov
Moscow
V. L. Minaev
Russian Federation
Vladimir L. Minaev
Moscow
References
1. Konopel’ko L. A., Refraktometricheskie metody v fi zikokhimicheskikh izmereniyakh, Moscow, Triumph Publ., 2020, 224 p. (in Russ.)
2. Shehadeh A., Evangelou A., Kechagia D. et al., Food Chemistry, 2020, vol. 329, 127085. https://doi.org/10.1016/j.foodchem.2020.127085
3. Xu M., Shao S., Weng N., Zhou L., Liu Q., Zhao Y., Applied Science, 2021, vol. 11(22), 10548. https://doi.org/10.3390/app112210548
4. OTI, Wilberforce J. O, Using Refractometer to Determine the Sugar Content in Soft Drinks Commonly Consumed, IOSR Journal of Applied Chemistry (IOSR-JAC), 2016, vol. 9, no. 7, pp. 89–91, available at: https://www.iosrjournals.org/ iosr-jac/papers/vol9-issue7/Version-1/N0907018991.pdf (assessed: 15.11.2022).
5. Golunov V. A., Gordeev K. V., Rykov K. N., RENSIT: Radioelectronics. Nanosystems. Information technologies, 2021, vol. 13(4), pp. 435–442. https://doi.org/10.17725/rensit.2021.13.435
6. Kuiper M., Van de Nes A., Nieuwland R., Varga Z., Van der Pol E., American Journal of Reproductive Immunology, 2021, vol. 85(2), e13350. https://doi.org/10.1111/aji.13350
7. Vishnyakov G. N., Fricke A., Parkhomenko N. M., Hori Y., Pisani M., Metrologia, 2016, vol. 53, no. 1A, 02001. https://doi.org/10.1088/0026-1394/53/1A/02001
8. Vishnyakov G. N., Levin G. G., Kornysheva S. V., Measurement Techniques, 2004, vol. 47, no. 11. pp. 1039–1043. https://doi.org/10.1007/s11018-004-0001-0
9. Pavlov P. A., Filatov Yu. V., Zhuravleva I. B., Optical Engineering, 2021, vol. 60(7), 074105. https://doi.org/10.1117/1.OE.60.7.074105
10. Vishnyakov G. N., Levin G. G., Kornysheva S. V., Zyuzev G. N., Lyudomirskii M. B., Pavlov P. A., Filatov Yu. V., Journal of Optical Technology, 2005, vol. 72, no. 12, pp. 929–933. https://doi.org/10.1364/JOT.72.000929
11. Ioffe B. V., Refractometric Methods in Chemistry, Leningrad, Khimiya Publ., 1974, 350 p. (in Russ.)
12. Tilton L. W., Prism Refractometry and Certain Goniometrical Requirements for Precision, Forgotten Books, 2017.
13. Kuiper M., Koops R., Nieuwland R., Van der Pol E., Metrologia, 2022, vol. 59, no. 5, 055006. https://doi.org/10.1088/1681-7575/ac8991
14. Demchuk V. Yu., Patent SU 1578599 A1, Byull. Izobret., no. 26 (1990)
Review
For citations:
Yurin A.I., Vishnyakov G.N., Minaev V.L. Measurement of the refractive index using a modified constant deviation method. Izmeritel`naya Tekhnika. 2022;(12):35-39. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-12-35-39