Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The model of viscosity measurement by the non-contact aerohydrodynamic method

https://doi.org/10.32446/0368-1025it.2022-11-57-64

Abstract

A brief review of non-contact methods for viscosity measurement is given. It is shown that it is reasonable to use the pulse aerohydrodynamic method for the measurement of high viscosity (more than 10 Pa·s). The essence of the method is presented, it consists in deforming the tested liquid surface with a gas jet and determining the viscosity from the time takes to reach a predetermined degree of deformation from the moment when the jet was applied. The two models and two functions of the viscosity measurements are theoretically obtained for the pulsed aerohydrodynamic method. The theoretical evaluation of the lower measurement limit is performed. We conduct the experimental research of two viscosity measurement models at the aerodynamic action angles of 20° and 50° with the compensation of transient process in the moment of a solenoid valve opening and without it. It is found that to determine the viscosity by the time of the liquid surface deformation it is reasonable to apply the linear measurement function, not to use the compensation of transient process in the pneumatics, and utilize the aerodynamic action at angle of 20–30° to the liquid surface. It is experimentally proved that the viscosity measurement relative error is not more than 3 % in the interval of 0.5–100 Pa·s. The results is necessary for increase in the operability of liquid viscosity measurement in machine, paint, coating, food, chemical, electrical, and petroleum industries.

About the Authors

A. P. Savenkov
Tambov State Technical University
Russian Federation

Aleksandr P. Savenkov

Tambov



V. A. Sychev
NPO “MIELTA TECHNOLOGII”
Russian Federation

Vladislav A. Sychev

Tambov



References

1. Домостроев А. В., Демьянов А. А., Клим О. В., Юдченко Д. А. Сравнительные исследования поточных вибрационных вискозиметров нефти // Измерительная техника. 2013. № 3. С. 62–66 [Domostroev A. V., Dem’yanov A. A., Klim O. V., Yudchenko D. A., Measurement. Techniques, 2013, vol.56, nо. 3, pp.337–343.https://doi.org/10.1007/s11018-013-0206-1 ]

2. Соломин Б. А., Черторийский А. А., Конторович М. Л., Низаметдинов А. М. Аппаратно-программный комплекс для оперативного исследования теплофизических свойств жидкости // Измерительная техника. 2014. № 3. С. 49–52. [Solomin B. A., Chertoriiskii A. A., Kontorovich M. L., Nizametdinov A. M., Measurement. Techniques, 2017, vol. 57, nо. 3, pp. 312–317. https://doi.org/10.1007/s11018-014-0451-y ]

3. Chaudhary K., Munjal P., Singh K. P., Sci. Rep., 2021, vol. 11, no. 14365. https://doi.org/10.1038/s41598-021-93729-0

4. Banks R. B., Chandrasekhara D. V., J. Fluid Mech., 1963, vol. 15, part 1, pp. 13−34. https://doi.org/10.1017/S0022112063000021

5. Савенков А. П., Сычёв В. А. Исследование реакции поверхности жидкости на импульсное воздействие наклонной газовой струи при малых числах Рейнольдса // Журнал технической физики. 2022. Т. 92. Вып. 2. С. 216–224. https://doi.org/10.21883/JTF.2022.02.52010.251-21 [Savenkov A. P., Sychev V. A., Tech. Phys., 2022, vol. 92, no. 2, pp. 183–190. https://doi.org/10.21883/TP.2022.02.52944.251-21 ]

6. Савенков А. П., Мордасов М. М., Сычёв В. А. Бесконтактное пневмоэлектрическое устройство для измерений вязкости жидкостей // Измерительная техника. 2020. № 9. С. 43–49. https://doi.org/10.32446/0368-1025it.2020-9-43-49 [Savenkov A. P., Mordasov M. M., Sychev V. A., Measurement Techniques, 2020, vol. 63, nо. 9, pp. 722–728. https://doi.org/10.1007/s11018-021-01845-0 ]

7. Herlach D. M., Cochrane R. F., Egry I., Fecht H. J., Greer A. L., Int. Mater. Rev., 1993, vol. 38, no. 6, pp. 273–347. https://doi.org/10.1179/095066093790326267

8. Li L. H., Hu L., Yang S. J., Wang W. L., Wei B., J. Appl. Phys., 2016, vol. 119, no. 035902. https://doi.org/10.1063/1.4940243

9. Xue S., Dong W., Chen D., Guo Q., He H., Yu J., Rev. Sci. Instrum., 2021, vol. 92, no. 065111. https://doi.org/10.1063/5.0026974

10. Beckers M., Engelhardt M., Schneider S., High Temp. – High Press., 2021, vol. 50, no. 3, pp. 167–184. https://doi.org/10.32908/hthp.v50.1031

11. Langstaff D., Gunn M., Greaves G. N., Marsing A., Kargl F., Rev. Sci. Instrum., 2013, vol. 84, no. 124901. https://doi.org/10.1063/1.4832115

12. Kremer J., Kilzer A., Petermann M., Rev. Sci. Instrum., 2018, vol. 89, no. 015109. https://doi.org/10.1063/1.4998796

13. Sohl C. H., Miyano K., Ketterson J. B., Rev. Sci. Instrum., 1978, vol. 49, no. 10, pp. 1464–1469. https://doi.org/10.1063/1.1135288

14. Behroozi F., Smith J., Even W., Am. J. Phys., 2010, vol. 78, no. 11, pp. 1165–1169. https://doi.org/10.1119/1.3467887

15. Koller T. M., Kerscher M., Fröba A. P., J. Colloid Interface Sci., 2022, vol. 626, pp. 899–915. https://doi.org/10.1016/j.jcis.2022.06.129

16. Nishimura Y., Hasegawa A., Nagasaka Y., Rev. Sci. Instrum., 2014, vol. 85, no. 044904, 11 p. https://doi.org/10.1063/1.4871992

17. Eguchi M., Taguchi Y., Nagasaka Y., Opt. Express, 2018, vol. 26, no. 26, pp. 34070–34080. https://doi.org/10.1364/OE.26.034070

18. Taylor M. A., Kijas A. W., Wang Z., Lauko J., Rowan A. E., Biomed. Opt. Express, 2021, vol. 12, no. 10, pp. 6259–6268. https://doi.org/10.1364/BOE.435869

19. Postnov D. D., Moller F., Sosnovtseva O., PLoS ONE, 2018, vol. 13(9), e0203141. https://doi.org/10.1371/journal.pone.0203141

20. Chan J., Raghunath A., Michaelsen K. E., Gollakota S., Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 2022, vol. 6, no. 1, pp. 3:1–3:27. https://doi.org/10.1145/3517256

21. Verma G., Yadav G., Saraj C. S., Li L., Miljkovic N., Delville J. P., Li W., Light: Sci. Appl., 2022, vol. 11, no. 115. https://doi.org/10.1038/s41377-022-00796-7

22. Yoshitake Y., Mitani, S., Sakai, K., Takagi, K., J. Appl. Phys., 2005, vol. 97, no. 024901. https://doi.org/10.1063/1.1839640

23. Shimokawa Y., Sakai K., Phys. Rev. E, 2013, vol. 87, no. 063009. https://doi.org/10.1103/PhysRevE.87.063009

24. Гализдра В. И., Мордасов М. М. Двухфазная система «струя газа – жидкость» в измерении вязкости жидких сред // Вестник ТГТУ. 1999. Т. 5. № 2. С. 218–227. [Galizdra V. I., Mordasov M. M., Dvuhfaznaya sistema “struya gaza – zhidkost’” v izmerenii vyazkosti zhidkih sred, Transactions TSTU, 1999, vol. 5, no. 2, pp. 218–227. (In Russ.)]

25. Гребенникова Н. М., Мордасов М. М. Пневматический метод контроля вязкости жидкостей // Вестник ТГТУ. 2005. Т. 11. № 1А. С. 81–87 [Grebennikova N. M., Mordasov M. M., Pnevmaticheskij metod kontrolya vyazkosti zhidkostej, Transactions TSTU, 2005, vol. 11, no. 1А, pp. 81–87. (In Russ.) ]

26. Мордасов М. М., Савенков А. П., Сафонова М. Э., Сычев В. А. Бесконтактное триангуляционное измерение расстояния до зеркальных поверхностей // Автометрия. 2018. Т. 54. № 1. С. 80–88. https://doi.org/10.15372/AUT20180111 [Mordasov M. M., Savenkov A. P., Safonova M. E., Sychev V. A., Optoelectron. Instrum. Data Process., 2018, vol. 54, no. 1, pp. 69–75. https://doi.org/10.3103/S8756699018010119 ]

27. Mishchenko S. V., Mordasov M. M., Savenkov A. P., Safonova M. E., Sychev V. A., Advanced Materials & Technologies, 2019, no. 3(15), pp. 50–55. https://doi.org/10.17277/amt.2019.03.pp.050-055

28. Мищенко С. В., Мордасов М. М., СавенковА. П., СычёвВ. А. Исследования влияния размеров сосуда с жидкостью на показания вискозиметра Брукфильда // Измерительная техника. 2020. № 4. С. 33–38. https://doi.org/10.32446/0368-1025it.2020-4-33-38 [Mischenko S. V., Mordasov M. M., Savenkov A. P., Sychev V. A., Measurement Techniques, 2020, vol. 63, nо. 4, pp. 288–294. https://doi.org/10.1007/s11018-020-01784-2 ]


Review

For citations:


Savenkov A.P., Sychev V.A. The model of viscosity measurement by the non-contact aerohydrodynamic method. Izmeritel`naya Tekhnika. 2022;(11):57-64. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-11-57-64

Views: 132


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)