Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The concentration measurement of hydrogen molecules in the atmosphere: lidar equation computer simulation for the differential absorption and scattering

https://doi.org/10.32446/0368-1025it.2022-11-38-43

Abstract

The issues of improving the accuracy of lidar measurements of the concentration of hydrogen molecules in the atmosphere are considered. A computer simulation of the lidar equation was carried out for differential absorption and scattering by hydrogen molecules during vertical remote sensing of the atmosphere to a height of up to 1500 m taking into account the ratio of the halfwidths of the lasing lines and the lidar apparatus function. It is shown by the computer simulation results that the relative error value sharply falls in the ranging distance up to 50 m. The relative error values remain almost unchanged and not exceeds 0.02 at the distance after 800 m. These results will be applied to develop new differential absorption and scattering lidars for the remote sensing of the hydrogen molecules in the atmosphere.

About the Authors

V. E. Privalov
Peter the Great St. Petersburg Polytechnic University
Russian Federation

Vadim E. Privalov

St. Petersburg



V. G. Shemanin
V. G. Shukhov Belgorod State Technological University, Novorossiysk Branch; Novorossiysk Polytechnic Institute of Kuban State Technological University
Russian Federation

Valery G. Shemanin

Novorossiysk



References

1. Privalov V. E., Shemanin V. G., Raman lidar system for the hydrogen molecules remote sensing in atmosphere, Optics and spectroscopy, 2022, vol. 130, no. 3, рр. 395–399. (In Russ.) https:/doi.org/10.21883/OS.2022.03.52168.2707-21

2. Hinkley E. D. (ed.), Laser monitoring of atmosphere (TAP, vol. 14), Springer, Berlin, Heidelberg, 1976. https://doi.org/10.1007/3-540-07743-X

3. Privalov V. E., Shemanin V. G., Technical Physics, 1999, vol. 44, no. 8, рр. 928–931. https://doi.org/10.1134/1.1259407

4. Nevzorov A. A., Romanovskii O. A., Sadovnikov S. A., Yakovlev S. V., Kharchenko O. V., Kravtsova N. S., Geints I. Yu., Romanovskii Ya. O., Optical Memory and Neural Networks, 2021, vol. 30, no. 2, рр. 97–104. https://doi.org/10.3103/S1060992X21020041

5. Measures Raymond M., Laser remote sensing: fundamentals and applications, New York, Wiley, 1984.

6. Lidar: range-resolved optical remote sensing of the atmosphere, Ed. C. Weitkamp, SSOS, vol. 102, New-York, Springer Science, Business Media Inc, 2005, 455 p. https://doi.org/10.1007/b106786

7. Krekov G. M., Krekova M. M., Sukhanov A. Ya., Lisenko A. A., Technical Physics Letters, 2009, vol. 35, no. 8, рр. 687–690. https://doi.org/10.1134/S1063785009080021

8. Privalov V. E., Shemanin V. G., Measurement Techniques, 2014, vol. 57, no. 4, рр. 396–400. https://doi.org/10.1007/s11018-014-0467-3

9. Privalov V. E., Shemanin V. G., Bulletin of the Russian Academy of Sciences: Physics, 2015, vol. 79, no. 2, рр. 149–159. https://doi.org/10.3103/S1062873815020203

10. Zuev V. V., Kataev M. Yu., Makogon M. M., Mitzel A. A., Lidar method of differential absorption. Modern status of studies, Atmospheric and ocean optics, 1995, vol. 8, no. 8, рр. 1136–1164.

11. Laser Handbook, ed. A. M. Prokhorov, in 2 volumes, vol. 1, Moscow, Sov. Radio Publ., 1978, 504 p. (In Russ.)

12. Sigimoto N., Sims N., Chan K., Killinger D. K., Optics Lett., 1990, vol. 15, no. 8, рр. 302–304. https://doi.org/10.1364/OL.15.000302

13. Privalov V. E., Shemanin V. G., Parametry lidarov dlya distantzionnogo zondirovaniya gasovykh molekul i aerozolya v atmosphere [Lidar parameters for the remote sensing of the gaseous molecules and aerosol in atmosphere], St. Petersburg, Balt. STU “Voenmekh” Publ., 2001, 56 p. (In Russ.)

14. Glazov G. N., Statisticheskiye voprosy lidarnogo zondirovaniya atmosfery [Statistical aspects of the lidar remote sensing of atmosphere], Novosibirsk, Nauka Publ., 1987, 308 p. (In Russ.)

15. Donchenko V. A., Kabanov M. V., Kaul B. V., Samokhvalov I. V., Atmosfernaya elektrooptica [Atmospheric electrooptics], Tomsk, NTL Publ., 2010, 220 p. (In Russ.)

16. Boreyisho A. S., Evdokimov I. M., Ivakin S. V., Lasery. Primeneniya i prilozheniya [Lasers. Applications], ed. A. S. Boreisho, St. Petersburg, Lan’ Publ., 2016, 520 p. (In Russ.)

17. Laser Handbook, ed. A. M. Prokhorov, in 2 volumes, vol. 2, Moscow, Sov. Radio Publ., 1978, 512 p. (In Russ.)

18. Aksenenko M. D., Baranochnikov M. L., Priemniki opticheskogo izlucheniya [Detectors of the optical radiation], Moscow, Radio i svyaz’ Publ., 1987, 296 p. (In Russ.)

19. Privalov V. E., Shemanin V. G., Measurement Techniques, 2020, vol. 63, no. 7, рр. 543–548. 10.1007/s11018-020-01821-0


Review

For citations:


Privalov V.E., Shemanin V.G. The concentration measurement of hydrogen molecules in the atmosphere: lidar equation computer simulation for the differential absorption and scattering. Izmeritel`naya Tekhnika. 2022;(11):38-43. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-11-38-43

Views: 191


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)