

Unifed fundamental equation of state of argon: construction technique in the framework of the scaling theory and tables of standard reference data
https://doi.org/10.32446/0368-1025it.2022-11-9-16
Abstract
Method for constructing a unified fundamental equation of state is developed. This fundamental equation of state is related to the matter and woks in a wide range of state parameters. The technique is based on the Benedek hypothesis and the method of pseudocritical points, which are based on the assertion that the isochoric and isobaric heat capacities, the isothermal compressibility coefficient, and the speed of sound in the vicinity of the critical point on the critical and noncritical isochores are described by power dependences with the same critical indices. There is a number of conditions, which considered in the work and connected with fundamental equation of state: it satisfies the requirements of the scaling theory for critical phenomena; in the gas region, it transforms into a virial equation of state; it satisfactorily transmits experimental data on thermal and caloric properties in wide temperature and pressure ranges; in the near-critical region, it describes experimental data on the density, the isochoric heat capacity, the isobaric heat capacity, and the speed of sound. It is built tables of standard reference data for argon in the temperature range from 83.806 K to 1200 K and at pressures from 0.1 to 1000 MPa on the basis of the fundamental equation of state.
About the Authors
V. A. KolobaevRussian Federation
Viktor A. Kolobaev
Moscow
S. V. Rykov
Russian Federation
Sergey V. Rykov
St. Petersburg
I. V. Kudryavtseva
Russian Federation
Irina V. Kudryavtseva
St. Petersburg
E. E. Ustyuzhanin
Russian Federation
Evgeniy E. Ustyuzhanin
Moscow
P. V. Popov
Russian Federation
Peter V. Popov
Moscow
V. A. Rykov
Russian Federation
Vladimir A. Rykov
St. Petersburg
A. D. Kozlov
Russian Federation
Aleksandr D. Kozlov
Moscow
References
1. Gilgen R., Kleinrahm R., Wagner W., J.Chem. Thermodyn., 1994, vol. 26, pp. 383–398. https://doi.org/10.1006/jcht.1994.1048
2. Thoen J., Vangeel E., Van Dael W., Physica, 1969, vol. 45, pp. 339–356. https://doi.org/10.1016/0031-8914(69)90261-4
3. Roder H. M., Perkins R. A., Nieto de Castro C. A., Int. J. hermophys., 1989, vol. 10, pp. 1141–1164. https://doi.org/10.1007/BF00500568
4. Perkins R. A., Friend D. G., Roder H. M., Nieto de Castro C. A., Int. J. Thermophys., 1991, vol. 12, pp. 965–984. https://doi.org/10.1007/BF00503513
5. Klimeck J., Kleinrahm R., Wagner W., J. Chem. Thermodyn., 1998, vol. 30, pp. 1571–1588. https://doi.org/10.1006/jcht.1998.0421
6. Gilgen R., Kleinrahm R., Wagner W., J. Chem. Thermodyn., 1994, vol. 26, pp. 399–413. https://doi.org/10.1006/jcht.1994.1049
7. Michels A., Wijker Hub., Wijker H.K., Physica, 1949, vol. 15, pp. 627–633. https://doi.org/10.1016/0031-8914(49)90119-6
8. Michels A., Levelt J. M., de Graaff W., Physica, 1958, vol. 24, pp. 659–671. https://doi.org/10.1016/S0031-8914(58)80080-4
9. Gladun C., Gryogenics, 1971, vol. 11, pp. 205–209. https://doi.org/10.1016/0011-2275(71)90312-2
10. Анисимов М. А., Ковальчук Б. А., Рабинович В. А., Смирнов В. А. Экспериментальное исследование изохорной теплоемкости аргона в широком диапазоне параметров состояния, включая критическую область // Теплофизические свойства веществ и материалов. 1975. Вып. 8. С. 237–245. [Anisimov M. A., Kovalchuk B. A., Rabinovich V. A., Smirnov V. A., Experimental study of the isochoric heat capacity of argon in a wide range of state parameters, including the critical region, Teplofi zicheskie svojstva veshchestv i materialov, 1975, vol. 8, pp. 237–245 (In Russ.)]
11. Анисимов М. А., Ковальчук Б. А., Рабинович В. А., Смирнов В. А. Результаты экспериментального исследования теплоемкости Сv аргона в однофазной и двухфазной областях // Теплофизические свойства веществ и материалов. 1978. Вып. 12. С. 86–106. [Anisimov M. A., Kovalchuk B. A., Rabinovich V. A., Smirnov V. A., Results of an experimental study of the heat capacity Cv of argon in single-phase and two-phase regions, Teplofi zicheskie svojstva veshchestv i materialov, 1978, vol. 12, pp. 86–106 (In Russ.)]
12. Voronel’ A. V., Gorbunova V. C., Smirnov V. A., Shmakov N. G., Shchekochikhina V. V., Thermodynamic quantities for pure liquids and the applicability of the asymptotic laws near the critical point, Sov. Phys. JETP, 1973, vol. 36, no. 3, pp. 505–513.
13. Bowman D. H., Aziz R. A., Lim C. C., Can. J. Phys., 1969, vol. 47, pp. 267–273. https://doi.org/10.1139/p69-035
14. Verbeke O. B., Jansoone V., Gielen R., De Boelpaep J., J. Phys. Chem., 1969, vol. 73, pp. 4076–4085. https://doi.org/10.1021/j100846a008
15. Wagner W., Cryogenics, 1973, vol. 13, pp. 470–482. https://doi.org/10.1016/0011-2275(73)90003-9
16. Biswas S. N., Trappeniers N. J., Kortbeek P. J., ten Seldam C. A., Rev. Sci. Instrum., 1988, vol. 59, pp. 470–476. https://doi.org/10.1063/1.1139863
17. Thoen J., Vangeel E., Van Dael W., Physica, 1971, vol. 52, pp. 205–224. https://doi.org/10.1016/0031-8914(71)90195-9
18. Estrada-Alexanders A. F., Trusler J. P. M., Int. J. Thermophys., 1996, vol. 17, pp. 1325–1347. https://doi.org/10.1007/BF01438673
19. Morris E. C., Wylie R. G., J. Chem. Phys., 1980, vol. 73, pp. 1359–1367. https://doi.org/10.1063/1.440252
20. Robertson S. L., Babb S. E., Scott G. J., J. Chem. Phys., 1969, vol. 50, pp. 2160–2166. https://doi.org/10.1063/1.1671345
21. Lecocq A., Determination Experimentale des Equations d’etat de L’Argon jusqua 1000 °C et 1000 kg/cm2, J. Recherches Centre National Recherche Scientifi c, 1960, vol. 55, pp. 55–82. (In Fr.)
22. Baba M., Dordain L., Coxam Y.-Y., Grolier J.-P., Calorimetric measurements of heat capacities and heats of mixing in the range 300–570 K and up to 30 MPa, Indian J. Technol., 1992, vol. 30, pp. 553–558.
23. Estrada-Alexanders A. F., Trusler J. P. M., J. Chem. Thermodynamics, 1995, vol. 27, pp. 1075–1089. https://doi.org/10.1006/jcht.1995.0113
24. Ewing M. B., Trusler J. P. M., Physica A, 1992, vol. 184, pp. 415–436. https://doi.org/10.1016/0378-4371(92)90314-G
25. Ewing M. B., Goodwin A. R. H., J. Chem. Thermodyn., 1992, vol. 24, pp. 531–547. https://doi.org/10.1016/S0021-9614(05)80123-5
26. Ewing M. B., Owusu A. A., Trusler J. P. M., Physica A, 1989, vol. 156, pp. 899–908. https://doi.org/10.1016/0378-4371(89)90026-5
27. Lestz S. S., J. Chem. Phys., 1963, vol. 38, pp. 2830–2834. https://doi.org/10.1063/1.1733609
28. Tegeler C., Span R., Wagner W., J. Phys. Chem. Ref. Data, 1999, vol. 28, pp. 779–849. https://doi.org/10.1063/1.556037
29. Stewart R. B., Jacobsen R. T., J. Phys. Chem. Ref. Data, 1989, vol. 18, pp. 639–799. https://doi.org/10.1063/1.555829
30. Rizi A., Abbaci A., J. Mol. Liq., 2012, vol. 171, pp. 64–70. https://doi.org/10.1016/j.molliq.2012.04.010
31. Rykov S. V., Kudryavtseva I. V., Rykov V. A., J. Phys.: Conf. Ser., 2019, vol. 1385, 012014. https://doi.org/10.1088/1742-6596/1385/1/012014
32. Rykov V. A., J. Eng. Phys. Thermophys., 1985, vol. 48, no. 4, pp. 476–481. https://doi.org/10.1007/BF00872077
33. Rykov V. A. , Rykov S. V., Kudryavtseva I. V., Sverdlov A. V., J. Phys. Conf. Ser., 2017, vol. 891, 012334. https://doi.org/10.1088/1742-6596/891/1/012334
34. Benedek G. B., Polarisation Matiereet Rayonnement – Volume Jubilaireenl’ Honneurd’ Alfred Kastler, Presses Universitaires de Paris, Paris, 1968, p. 71.
35. Kudryavtseva I. V., Rykov V. A., Rykov S. V., Ustyuzhanin E. E., J. Phys. Conf. Ser., 2018, vol. 946, 012118. https://doi.org/10.1088/1742-6596/946/1/012118
36. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., J. Eng. Phys. Thermophys., 1992, vol. 62, no 6, pp. 611–617. https://doi.org/10.1007/BF00851887
37. Кудрявцева И. В., Рыков С. В. Непараметрическое уравнение состояния скейлингового вида, разработанное на основе феноменологической теории Мигдала и гипотезы Бенедека // Журнал физической химии. 2016. Т. 90. № 7. С. 1119–1121. https://doi.org/10.7868/S0044453716070153[Kudryavtseva I. V.,Rykov S. V., Russ. J.Phys.Chem. A,2016,vol.90,pp.1493–1495.https://doi .org/10.1134/S0036024416070153 ]
38. Рыков С. В., Кудрявцева И. В. Теплопроводность жидких гидрофторолефинов и гидрохлорфторолефинов на линии насыщения // Журнал физической химии. 2022. T. 96. № 10. С. 1421–1427. https://doi.org/10.31857/S0044453722100272 [Rykov S. V., Kudryavtseva I. V., Rykov V. A., Ustyuzhanin E. E., J. Phys. Conf. Ser., 2021, vol. 2057, 012113. https://doi.org/10.1088/1742-6596/2057/1/012113 ]
39. Колобаев В. А., Рыков С. В., Кудрявцева И. В., Устюжанин Е. Е., Попов П. В., Рыков В. А., Свердлов А. В. Методика построения уравнения состояния и термодинамических таблиц для хладагента нового поколения // Измерительная техника. 2021. № 2. С. 9–15. https://doi.org/10.32446/0368-1025it.2021-2-9-15[Kolobaev V. A.,Rykov S. V.,Kudryavtseva,I. V. et al.,Measurement Techniques, 2021,vol.64, no. 2, pp. 86–93. https://doi.org/10.1007/s11018-021-01901-9 ]
40. Скрипов В. П., Синицин Е. Н., Павлов П. А. и др. Теплофизические свойства жидкостей в метастабильном состоянии. М.: Атомиздат, 1980. 208 с. [Skripov V. P., Sinicin Е. N., Palov P. A., et. al., Teplofi zicheskie svojstva zhidkostej v metastabil’nom sostoyanii, Moscow, Atomizdat Publ., 1980, 208 p. (In Russ.)]
41. Колобаев В. А., Рыков С. В., Кудрявцева И. В., Устюжанин Е. Е., Попов П. В., Рыков В. А., Козлов А. Д. Термодинамические свойства хладагента R1233zd(E): методика построения фундаментального уравнения состояния и табулированные данные // Измерительная техника. 2022. № 5. С. 22–28. [Kolobaev V. A., Rykov S. V., Kudryavtseva, I. V. et al., Thermodynamic properties of R1233zd(E) refrigerant: a technique for constructing the fundamental equation of state and tabulated data, Izmeritel’naya tekhnika, 2022, no. 5, pp. 22–28 (In Russ.)] https://doi.org/10.32446/0368-1025it.2022-5-22-28
Review
For citations:
Kolobaev V.A., Rykov S.V., Kudryavtseva I.V., Ustyuzhanin E.E., Popov P.V., Rykov V.A., Kozlov A.D. Unifed fundamental equation of state of argon: construction technique in the framework of the scaling theory and tables of standard reference data. Izmeritel`naya Tekhnika. 2022;(11):9-16. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-11-9-16