

Reference system for observation, storing and transmitting a two-dimensional spatial distribution (profile) of solids refractve index unit
https://doi.org/10.32446/0368-1025it.2022-10-26-30
Abstract
The issues of metrological support of measuring instruments of two-dimensional spatial distribution (profile) of the refractive index unit of solid substances are considered. A reference setup has been developed, which is included in the State primary standard of the refractive index unit GET 138-2021. The composition, principle of operation, and main metrological characteristics of the reference setup, which is based on a digital interferometer for measuring the two-dimensional spatial distribution (profit le) of the refractive index of thin sections of preforms of graded glass fibers, are presented. The reference setup from GET 138-2021 for the first time ensures the uniformity of measurements for measuring instruments for the refractive index profile, the so-called optical analyzers of preforms and the fiber itself, which are used in the production of optical glass fibers. The results of experimental studies of GET 138-2021 in terms of reproducing the two-dimensional spatial distribution of a refractive index unit are presented.
Keywords
About the Authors
G. N. VishnyakovRussian Federation
Gennady N. Vishnyakov
Moscow
V. L. Minaev
Russian Federation
Vladimir L. Minaev
Moscow
S. S. Bochkareva
Russian Federation
Svetlana S. Bochkareva
Moscow
References
1. Ivanova S. M., Eliseev O. V., Mikhailenko A. S., Studenikin O. L., Overview of optical fi ber primary parameter methods, Sci. Tech. J. Inf. Technol. Mech. Opt., 2008, no. 51, pp. 78–83. (In Russ.)
2. Ding M., Fan D., Wang W., Luo Y., Peng G.-D., Basics of Optical Fiber Measurements, In: Peng G.-D. (eds) Handbook of Optical Fibers, Springer, Singapore, 2018, pp. 1–39. https://doi.org/10.1007/978-981-10-1477-2_57-2
3. Chu P. L., Electronics Letters, 1977, vol. 13, no. 24, рp. 736–738. https://doi.org/10.1049/el:19770520
4. Gowar J., Optical Communication Systems, Prentice-Hall Inlernalional, Inc., London, Prentice/Hall International, Englewood Cliffs, NJ, 1984, 577 p.
5. Marcuse D., Principles of Optical Fiber Measurement, N.Y., Academic Press, 1981, 360 p.
6. Philen D. L., Measurement and Characterization of Optical Fibers, In: Lin C. (eds), Optoelectronic Technology and Lightwave Communications Systems, Springer, Dordrecht, 1989, рр. 51–78. https://doi.org/10.1007/978-94-011-7035-2_2
7. Stewart W.J., A new technique for measuring the refractive index profi les of graded index optical fi bers, Tech. Digest, Int. Conf. Integrated Optics and Opt. Fiber Commun., Tokyo, Japan, July 1977, pp. 395, C2-2.
8. Afanas’ev A. N., Ivanov A. F., Makhrov V. I., Shibaev A. A., Myalitsin L. A., Platonov N. N., Refractive Index Profi le Meter for Optical Quartz Preforms, Izvestiya Chelyabinskogo nauchnogo tsentra, 2003, no. 4, pp. 15–19 (In Russ.)
9. Vishnyakov G. N., Minaev V. L., Bochkareva S. S., Izmeritel`naya Tekhnika, 2022, no. 5, pp. 4–9. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-5-4-9
10. Yablon A. D. Multiwavelength optical fi ber refractive index profi ling, Proc. SPIE 7580, Fiber Lasers VII: Technology, Systems, and Applications, 2010, 758015. https://doi.org/10.1117/12.841883
Review
For citations:
Vishnyakov G.N., Minaev V.L., Bochkareva S.S. Reference system for observation, storing and transmitting a two-dimensional spatial distribution (profile) of solids refractve index unit. Izmeritel`naya Tekhnika. 2022;(10):26-30. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-10-26-30