Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Measuring system on a basis of non-recursive filters with optimal dynamic error correction

https://doi.org/10.32446/0368-1025it.2022-10-19-25

Abstract

The problem of the dynamic measurement error estimation and compensation is considered. This type of error is determined by two components. The fi rest one is due to dynamic properties (inertia) of a sensor. The second one is due to the presence of an additive noise at the sensor output. The dynamic error reduction consists in simultaneous correction of these two components. The structure of the measuring system with the dynamic measurement error estimation is developed. Correction of the dynamic error is carried out by simultaneous restoration and fi altering of the measured sensor input signal. The structure of a special filter with a preliminary correction of the sensor transfer function to a form convenient for further processing of the measured signal is proposed. Further signal processing consists in the iterative application of a restoring FIR fi later with the dynamic error estimation. A computer simulation of the proposed measuring system for the second-order sensor was carried out. Optimal (in the sense of minimization of the dynamic error estimation) orders of the restoring filter are obtained for input signals of various types in the presence of an additive Gaussian noise at the sensor output. A decrease in the dynamic error estimation based on the proposed structure of the dynamic measuring system is demonstrated. The application fi eld of the results obtained is the measurement of fast-changing processes, when the dynamic component of the error, caused by dynamic properties (inertia) of the sensor, as well as additive noises at its output, is dominant.

About the Author

A. S. Volosnikov
South Ural State University (National Research University)
Russian Federation

Andrei S. Volosnikov

 Chelyabinsk



References

1. Hessling J. P., Measurement Science and Technology, 2008, vol. 19(7), 075101. https://doi.org/10.1088/0957-0233/19/7/075101

2. Hessling J. P., Measurement Science and Technology, 2008, vol. 19(8), 084008. https://doi.org/10.1088/0957-0233/19/8/084008

3. Hessling J. P., Measurement Science and Technology, 2009, vol. 20(5), 055106. https://doi.org/10.1088/0957-0233/20/5/055106

4. Kollar I., Osvath P., Zaengl W. S., Conference Record of the 1988 IEEE International Symposium on Electrical Insulation, Cambridge, MA, USA, June 5–8, 1988, pp. 359–363. https://doi.org/10.1109/ELINSL.1988.13941

5. Vester R., Percin M., and van Oudheusden B., Measurement Science and Technology, 2016, vol. 27(9), 095302. https://doi.org/10.1088/0957-0233/27/9/095302

6. Neelamani R., Choi H., Baraniuk R., IEEE Transactions on Signal Processing, 2004, vol. 52(2), pp. 418–433. https://doi.org/10.1109/TSP.2003.821103

7. Shen X. A., Walter G. G., Numerical Functional Analysis and Optimization, 2002, vol. 23(1-2), pp. 195–215. https://doi.org/10.1081/NFA-120003678

8. Fan J., Koo J.-Y., IEEE Transactions on Information Theory, 2002, vol. 48(3), pp. 734–747. https://doi.org/10.1109/18.986021

9. Qian, A., Applied Mathematics and Computation, 2008, vol. 203(2), pp. 635–640. https://doi.org/10.1016/j.amc.2008.05.009

10. Dichev D., Koev H., Bakalova T., Louda P., Measurement Science Review, 2014, vol. 14(4), pp. 183–189. https://doi.org/10.2478/msr-2014-0025

11. Dichev D., Koev H., Bakalova T., Louda P., Journal of Theoretical and Applied Mechanics, 2014, vol. 44(1), pp. 3–20. https://doi.org/10.2478/jtam-2014-0001

12. Dichev D., Koev H., Bakalova T., Louda P., Measurement Science Review, 2015, vol. 15(1), pp. 19–26. https://doi.org/10.1515/msr-2015-0004

13. Dichev D., Koev H., Bakalova T., Louda P., Metrology and Measurement Systems, 2016, vol. 23(4), pp. 555–565. https://doi.org/10.1515/mms-2016-0041

14. Dichev D., Zhelezarov I., Diakov D., Nikolova H., Miteva R., 2019 XXIX International Scientifi c Symposium “Metrology and Metrology Assurance” (MMA) Proceedings, Sozopol, Bulgaria, Sept. 6–9, 2019, pp. 01–04. https://doi.org/10.1109/MMA.2019.8936039

15. Rossi G. B., IEEE Transactions on Instrumentation and Measurement, 2012, vol. 61(8), pp. 2097–2106. https://doi.org/10.1109/TIM.2012.2197071

16. Rossi G. B., 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings, Pisa, Italy, May 11–14, 2015, pp. 1516–1521. https://doi.org/10.1109/I2MTC.2015.7151503

17. Saggin B., Debei S., Zaccariotto M., Measurement, 2001, vol. 30(3), pp. 223–230. https://doi.org/10.1016/S0263-2241(01)00015-X

18. Shestakov A. L., IEEE Transactions on Instrumentation and Measurement, 1996, vol. 45(1), pp. 250–255. https://doi.org/10.1109/19.481342

19. Shestakov A. L., Advanced Mathematical and Computational Tools in Metrology and Testing X, Series on Advances in Mathematics for Applied Sciences, 2015, vol. 86, pp. 66–77. https://doi.org/10.1142/9789814678629_0008

20. Shestakov A. L., ACTA IMEKO, 2019, vol. 8(1), pp. 64–76. https://doi.org/10.21014/acta_imeko.v8i1.568

21. Yurasova E. V., Biziaev M. N., Volosnikov A. S., Procedia Engineering, 2015, vol. 129, pp. 764–769. https://doi.org/10.1016/j.proeng.2015.12.101

22. Yurasova E. V., Bizyaev M. N., Volosnikov A. S., Bulletin of the South Ural State University. Ser. Computer Technologies, Automatic Control, Radio Electronics, 2015, vol. 16(1), pp. 64–80. https://doi.org/10.14529/ctcr160106

23. Volosnikov A. S., Shestakov A. L., ACTA IMEKO, 2016, vol. 5(3), pp. 24–31. https://doi.org/10.21014/acta_imeko.v5i3.294

24. Bizyaev M. N., Volosnikov A. S., Advanced Mathematical and Computational Tools in Metrology and Testing XI, Series on Advances in Mathematics for Applied Sciences, 2018, vol. 89, pp. 153–161. https://doi.org/https://doi.org/10.1142/9789813274303_0012

25. Yurasova E. V., Volosnikov A. S., Advanced Mathematical and Computational Tools in Metrology and Testing XI, Series on Advances in Mathematics for Applied Sciences, 2018, vol. 89, pp. 427–438. https://doi.org/10.1142/9789813274303_0043

26. Franklin G. F., Powell J. D., Workman M. L., Digital Control of Dynamic Systems (3rd Edition), Addison-Wesley, 1998, 742 p.


Review

For citations:


Volosnikov A.S. Measuring system on a basis of non-recursive filters with optimal dynamic error correction. Izmeritel`naya Tekhnika. 2022;(10):19-25. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-10-19-25

Views: 98


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)