

Phase-spectral ellipsometry method for non-destructive control of the chemical composition of thin metal-oxide heterostructures
https://doi.org/10.32446/0368-1025it.2022-8-62-67
Abstract
The problem of insufficient accuracy, informativeness and efficiency of recognition of the structure and composition of inhomogeneous surface layers of thin metal-oxide heterostructures during non-destructive testing by spectral optical methods is considered. It is noted that the currently available methods of studying such layers, as a rule, are destructive in nature. To improve the accuracy, informativeness and efficiency of non-destructive testing of the chemical composition of thin metal-oxide heterostructures, a method of phase-spectral ellipsometry has been developed. In this method, the results of ellipsometric measurements of reflected radiation of various wavelengths are used to determine the distribution function of the complex refractive index of an inhomogeneous surface layer along its depth. To implement the proposed method, a phase spectral ellipsometer circuit with a wavelength as a control signal of the feedback channel has been created. The method of phase-spectral ellipsometry is used to control the distribution of chemical composition over the depth of thin metal-oxide heterostructures on the surface of stainless steel Cr18-Ni10-Ti, oxidized at low temperatures and oxygen pressures. When comparing the obtained results with independent auger profiling data of oxidized samples, it was found that the distribution of the chemical composition over the depth of the oxide corresponds to independent Auger data. It is shown that the method of phase spectral ellipsometry makes it possible to clearly separate and identify various oxidized forms of the alloy. The presented method can be used for non-destructive and especially in-situ study of the distribution of chemical composition over the depth of ultrathin inhomogeneous surface oxides.
About the Authors
D. N. TyurinRussian Federation
Denis N. Tyurin
Moscow
V. A. Kotenev
Russian Federation
Vladimir A. Kotenev
Moscow
References
1. Paolo Mele, Tamio Endo, Shunichi Arisawa, Chaoyang Li, Tetsuo Tsuchiya, Oxide Thin Films, Multilayer, and Nanocomposites, Springer Int. Publ., Switzerland, 2015, 316 p. https://doi.org/10.1007/978-3-319-14478-8
2. Losurdo M., Ellipsometry at the nanoscale, ed. M. Losurdo, K. Hingerl, Berlin, Heidelberg, Springer, 2013, 730 p. https://doi.org/10.1007/978-3-642-33956-1
3. Azzam Rasheed M., Bashara Nicholas M., Ellipsometry and Polarized Light, North Holland; 3rd reprint 1999 edition, 558 p.
4. Kotenev V. A., Proc. SPIE, Analytical Methods for Optical Tomography, 1992, vol. 1843. https://doi.org/10.1117/12.131899
5. Тюрин Д. Н., Котенев В. А., Цивадзе А. Ю. Метод спектрально-эллипсометрической оценки фазового состава многослойных плёнок и металл-оксидных структур в процессе их роста // Измерительная техника. 2019. № 11. С. 62–67. https://doi.org/10.32446/0368-1025it.2019-11-62-67 [Tyurin D.N.,Kotenev V. A.,Tsivadze A.Y., Measurement Techniques, 2020, vol.62. no.11, pp.996–1002. https://doi.org/10.1007/s11018-020-01724-0].
6. Jasperson S. N., Schnatterly S. E., Rev. Sci. Instr., 1969, vol. 40, no. 6, pp. 761–767. https://doi.org/10.1063/1.1684062
7. O’Hunderi, Surface Science, 1976, vol. 61, no. 2, pp. 515– 520. https://doi.org/10.1016/0039-6028(76)90063-7
8. Тихонов А. Н., Арсенин В. Я. Методы решения некорректных задач. М.: Наука. 1986. 287 с. [Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnyh zadach, Moscow, Nauka Publ., 1986, 287 p. (In Russ.)].
9. Kotenev V. A., Protection of Metals, 2003, vol. 39, no. 4, pp. 301–310. https://doi.org/10.1023/A:1024926927108
10. Окисление металлов / Под ред. Бенара Ж. М.: Металлургия, 1968. Т. 2. 448 с. [Oxydation des Metaux, ed. Benard J., Paris, Gauthier-Villars, 1962, V. 2].
11. Kotenev V. A., Protection of Metals and Physical Chemistry of Surfaces, 2021, vol. 57, no. 6, pp. 1150–1158. http://dx.doi.org/10.1134/s2070205121060137
12. O’Hunderi, Surface Science, 1980, vol. 96, pp. 1–31. https://doi.org/10.1016/0039-6028(80)90291-5
13. Tanaka T., Jap. J. Applied Physics, 1979, vol. 18, no. 6, 1043. https://doi.org/10.1143/JJAP.18.1043
14. Idczak E., Oleszkiewicz E., Thin Solid Films, 1981, vol. 77, no. 4, pp. 301–303. https://doi.org/10.1016/0040-6090(81)90321-7
15. Винчелл А. Н., Винчелл Г. В. Оптические свойства искусственных минералов: Пер. с англ. Н. Н. Курцевой и Н. И. Овсянниковой / Под ред. и с предисл. д. геол.-минерал. наук В. В. Лапина. М.: Мир, 1967. С. 98 [Winchell A. N., Winchell H., Optical Properties of Artifi cial Minerals, New York, Academic, 1964].
16. Greyling C. J., Roux J. P., Corrosion Science, 1984, vol. 24, no. 8, p. 675. https://doi.org/10.1016/0010-938X(84)90058-1
17. Венер Г., Лихтман Д., Бак Т. и др. Методы анализа поверхностей / Под ред. А. Зандерны. Пер. с англ. под ред. [и с предисл.] В. В. Кораблева, Н. Н. Петрова. М.: Мир, 1979. 582 с. [Von A. W. Czanderna, Methods of Surface Analysis, Bd. 1, Elsevier Scientifi c Publishing Comp., Amsterdam, Oxford, NewYork, 1975. https://doi.org/10.1002/CITE.330480539].
18. Kotenev V. A., Protection of Metals and Physical Chemistry of Surfaces, 2021, vol. 57, no. 5, pp. 1097–1104. https://doi.org/10.1134/S2070205121050142
Review
For citations:
Tyurin D.N., Kotenev V.A. Phase-spectral ellipsometry method for non-destructive control of the chemical composition of thin metal-oxide heterostructures. Izmeritel`naya Tekhnika. 2022;(8):62-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-8-62-67