

A three-dimensional measurement system based on the phase triangulation and binary Grey codes methods: the software package for configuration
https://doi.org/10.32446/0368-1025it.2022-8-46-51
Abstract
Three-dimensional object geometry measurement systems based on the phase triangulation and binary Grey codes methods were considered. Such system configuration difficulties: under non-standard measurement conditions when it is necessary to adapt system elements to environmental conditions were analyzed. To ensure the possibility of optimal measurement system parameters search, the measurement system configuration quality quantitative estimates based on object three-dimensional geometry measurement results and intermediate measurement data were introduced. The measurement system configuration quality quantitative estimates calculation algorithms were developed. The software package, consisting of two programs, that allows to process and visualize object three-dimensional geometry measurement results and intermediate measurement data and to display measurement system operation quality quantitative estimates was created. The software package was tested on the ice three-dimensional measurement system that is used in the icing of reduced wind generator functional elements effects studying stand. The measurement system was configured for the measurement volume with the characteristic size of 85×67×25 mm. The modulation signal frequency and the optical system parameters were optimized: the optical radiation source and receiver relative location, their focal lengths, the receiver exposure time and analog signal gain value. The three-dimensional geometry measurement error of 9 μm was achieved. The three-dimensional object geometry measurement system based on the phase triangulation and binary Grey codes methods configuration possibility with the help of the developed software package was confirmed. The software package can be used in spheres where it is necessary to adapt parameters of the three-dimensional geometry measurement system based on the phase triangulation and binary Grey codes methods to environmental conditions, for example, wind and hydropower, hot metallurgy.
About the Authors
V. O. ZuevRussian Federation
Vladislav O. Zuev
Novosibirsk
S. V. Dvoynishnikov
Russian Federation
Sergey V. Dvoynishnikov
Novosibirsk
I. K. Kabardin
Russian Federation
Ivan K. Kabardin
Novosibirsk
V. G. Meledin
Russian Federation
Vladimir G. Meledin
Novosibirsk
References
1. Меледин В. Г. Оптоэлектронные информационные си- стемы для науки и промышленности // Интерэкспо Гео-Сибирь. 2014. Т. 5. № 1. С. 3–12 [Meledin V. G., Optoelectronic Information Systems for Science and Industry, Interekspo Geo-Sibir’, 2014, vol. 5, no. 1, pp. 3–12. (In Russ.)].
2. Чугуй Ю. В. Трёхмерные оптико-электронные измеритель- ные системы и лазерные технологии для научных и промышлен- ных применений // Автометрия. 2015. Т. 51. № 4. С. 76–91 [Chugui Yu. V. Optoelectronics, Instrumentation and Data Processing, 2015, vol. 51(4), pp. 385–397. https://doi.org/10.3103/S8756699015040093].
3. Chen L., Huang C., Meas. Sci. Techn., 2005, vol. 16 (5), pp. 1061–1068. https://doi.org/10.1088/0957-0233/16/5/003
4. Genovese K., Pappalettere C., Opt. Laser Eng., 2006, vol. 44(12), pp. 1311–1323. https://doi.org/10.1016/j.optlaseng.2005.12.005
5. Lilley F., Lalor M. J., Burton D. R., Opt. Eng., 2000, vol. 39(1), pp. 187–195. https://doi.org/10.1117/1.602351
6. Moore C. J., Burton D. R., Skydan O., Sharrock P. J., Lalor M., Proc. Int. Conf. Medical Information Visualisation – BioMedical Visualisation, 2006, 1691277, pp. 97–102. https://doi.org/10.1109/MEDIVIS.2006.3
7. Hanafi A., Gharbi T., Cornu J., Appl. Opt., 2005, vol. 44(12), pp. 2266–2273. https://doi.org/10.1364/AO.44.002266
8. Berryman F., Pynsent P., Fairbank J., Disney S., European Spine Journal, 2008, vol. 17 (5), pp. 663–672. https://doi.org/10.1007/s00586-007-0581-x
9. Hain T., Eckhardt, Kunzi-Rapp K., Schmitz B., Medical Laser Application, 2002, vol.17 (1), pp. 55–58. https://doi.org/10.1078/1615-1615-00047
10. Ferraq Y., Black D., Lagarde J. M., Schmitt A. M., Dahan S., Grolleau J. L., Mordon S., Skin Research and Technology, 2007, vol. 13(4), pp. 399–405. https://doi.org/10.1111/j.1600-0846.2007.00243.x
11. Jaspers S., Hopermann H., Sauermann G., Hoppe U., Lunderstädt R., Ennen J., Skin Research and Technology, 1999, vol. 5 (3), pp. 195–207. https://doi.org/10.1111/j.1600-0846.1999.tb00131.x
12. Lagarde J. M., Rouvrais C., Black D., Diridollou S., Gall Y., Skin Research and Technology, 2001, vol. 7(2) , pp. 112–121. https://doi.org/10.1034/j.1600-0846.2001.70210.x
13. Quan C., Tay C. J., He X. Y., Kang X., Shang H. M., Opt. Laser Techn., 2002, vol. 34 (7), pp. 547–552. https://doi.org/10.1016/S0030-3992(02)00070-1
14. He X., Sun W., Zheng X., Nie M., Key Engineering Materials, 2006, vol. 326-328, pp. 211–214. https://doi.org/10.4028/www.scientifi c.net/KEM.326-328.211
15. Yilmaz S. T., Ozugurel U. D., Bulut K., Inci M. N., Opt. Commun., 2005, vol. 249(4-6), pp. 515–522. https://doi.org/10.1016/j.optcom.2005.01.032
16. Zhang Q., Su X., Opt. Express, 2005, vol.13(8), pp. 3110– 3116. https://doi.org/10.1364/OPEX.13.003110
17. De Angelis M., De Nicola S., Ferraro P., Finizio A., Pierattini G., Opt. Commun, 2000, vol. 175(4), pp. 315–321. https://doi.org/10.1016/S0030-4018(00)00477-6
18. Zhang Q., Su X., Opt. Laser Technol., 2002, vol. 34(2), pp. 107–113. https://doi.org/10.1016/S0030-3992(01)00097-4
19. Cobelli P. J., Maurel A., Pagneux V., Petitjeans P., Experiments in Fluids, 2009, vol. 46(6), pp. 1037–1047. https://doi.org/10.1007/s00348-009-0611-z
20. Roger Ernst R. V., Weckenmann A., Local Wall Thickness Measurement of Formed Sheet Metal Using Fringe Projection Technique, Proceedings XVII IMEKO World Congress, Metrology in the 3rd Millennium, June 22−27, 2003, Dubrovnik, Croatia, 2003, pp. 1802–1805.
21. Huang P. S., Jin F., Chiang F., Opt. Laser Eng., 1999, vol. 31(5), pp. 371–380. https://doi.org/10.1016/S0143-8166(99)00019-6
22. Jang P., et al, Proc. SPIE, 2006, 6377 (63770S) https://doi.org/10.1117/12.694358
23. Spagnolo G. S., Ambrosini D., Physical, 2002, vol. 100 (2-3), pp. 180–186. https://doi.org/10.1016/S0924-4247(02)00051-1
24. Chen L., Chang Y., Key Engineering Materials, 2008, vol. 364-366, pp. 113–116. https://doi.org/10.4028/www.scientifi c.net/KEM.364-366.113
25. Burke J., Bothe T., Osten W., Hess C., Proc. SPIE, 2002, vol. 4778, pp. 312–324. https://doi.org/10.1117/12.473547
26. Lin C., He H., Guo H., Chen M., Shi X., Yu T., Journal of Shanghai University, 2005, vol. 9(2), pp. 153–158. https://doi.org/10.1007/s11741-005-0069-z
27. Hecht J., Lamprecht K., Merklein M., Galanulis K., Steinbeck J., Key Engineering Materials, 2007, vol. 344, pp. 847–853. https://doi.org/10.4028/www.scientifi c.net/KEM.344.847
28. Yen H., Tsai D., Yang J., IEEE Trans. Electronics Packaging Manufacturing, 2006, vol. 29(1), pp. 50–57. https://doi.org/10.1109/TEPM.2005.862632
29. Hui T., Pang G. K., Int. Journal of Advanced Manufacturing Technology, 2009, vol. 42(7-8), pp. 725–734. https://doi.org/10.1007/s00170-008-1639-6
30. Hong D., Lee H., Kim M. Y., Cho H., Moon J., Appl. Opt., vol. 48(21), pp. 4158–4169. https://doi.org/10.1364/AO.48.004158
31. Ambrosini D., Paoletti D., Opt. Eng., 2007, vol. 46(9), 093606. https://doi.org/10.1117/1.2779023
32. Gorthi S. S., Rastogi P., Optics and Lasers in Engineering, 2010, vol. 48, iss. 2, pp. 133–140. https://doi.org/10.1016/j.optlaseng.2009.09.001
33. Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G., Measurement, 2019, vol. 145, pp. 63–70. https://doi.org/10.1016/j.measurement.2019.05.054
34. Гужов В. И., Солодкин Ю. Н. Анализ точности опре- деления полной разности фаз в целочисленных интерфе- рометрах // Автометрия. 1992. № 6. С. 24–30 [Guzhov V. I., Solodkin Yu. N., Analiz tochnosti opredeleniya polnoi raznosti faz v tselochislennykh interferometrakh, Avtometriya, 1992, vol. 6, pp. 24–30 (In Russ.)].
35. Двойнишников С. В., Куликов Д. В., Меледин В. Г. Оп- тоэлектронный метод бесконтактного восстановления про- филя поверхности трёхмерных объектов сложной формы // Метрология. 2010. № 4. С. 15–27 [Dvoynishnikov, S. V., Kulikov D. V., Meledin V. G., Measurement Techniques, 2010, vol. 53(6), pp. 648–656. https://doi.org/10.1007/s11018-010-9556-0].
36. Двойнишников С. В., Аникин Ю. А., Кабардин И. К., Куликов Д. В., Меледин В. Г. Оптоэлектронный метод бес- контактного измерения профиля поверхности крупногаба- ритных объектов сложной формы // Измерительная техника. 2016. № 1. С. 17–21 [Dvoinishnikov S. V., Anikin Y. A., Kabardin I. K., Kulikov D. V., Meledin V. G., Measurement Techniques, 2016, vol. 59(1), pp. 21–27. https://doi.org/10.1007/s11018-016-0910-8].
37. Пат. № 2708940 РФ / С. В. Двойнишников, В. Г. Ме- ледин, И. В. Щепихин, И. К. Кабардин, Д. В. Куликов // Изо- бретения. Полезные модели. 2019. № 35 [Dvoinishnikov S. V., Meledin V. G., Shchepikhin I. V., Kabardin I. K., Kulikov D. V., RF Patent no. 2708940, Inventions. Utility Models, no. 35 (2019)].
Review
For citations:
Zuev V.O., Dvoynishnikov S.V., Kabardin I.K., Meledin V.G. A three-dimensional measurement system based on the phase triangulation and binary Grey codes methods: the software package for configuration. Izmeritel`naya Tekhnika. 2022;(8):46-51. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-8-46-51