

Discrete algorithm for disk morphological filter based on piecewise linear interpolation
https://doi.org/10.32446/0368-1025it.2022-8-35-40
Abstract
The use of six-axis coordinate measuring machines “Lapik” for measuring the roughness of complex surfaces has a feature that consists in non-uniform discretization along the coordinate axes. One of the elements of the applied software should be a morphological filtering algorithm that takes into account this specificity. Compared to linear and regression Gaussian filters, morphological filters have a number of advantages. The main ones are the absence of edge effects and the not need to first apply a form filter. The well-known basic discrete algorithm for the morphological filter provides for a constant profile discretization step. Another limitation is related to the error from the discretization of the structural element. This article presents a discrete algorithm that takes into account the indicated features of measurement on coordinate measuring machines. To do this, the primary roughness profile is subjected to piecewise linear interpolation, and the disk structural element is described continuously. This makes it possible to determine the center of the disc with less error during morphological operations. Checking the accuracy of the algorithm on real and model examples showed that the filtering error in measuring the parameters Ra and Rqs about 3 %. The advantage of the developed algorithm is realized with a high unevenness of the initial data. The comparison of the performance of the proposed algorithm with the known ones showed its sufficient efficiency. The calculation time for 10000 points of the roughness profile does not exceed 0.05 sec.
About the Authors
О. V. ZakharovRussian Federation
Оleg V. Zakharov
Saratov
A. G. Laptev
Russian Federation
Alexander G. Laptev
Saratov
V. G. Lysenko
Russian Federation
Valery G. Lysenko
Moscow
E. A. Milovanova
Russian Federation
Ekaterina A. Milovanova
Moscow
N. A. Tabachnikova
Russian Federation
Natalia A. Tabachnikova
Moscow
References
1. А. с. СССР 1296832 МПК G01B 1/28. Способ контроля формы изделий на координатно-измерительной машине / А. Г. Лаптев, С. Г. Бойченко, В. Д. Семенов, А. Г. Маринин, О. Д. Лосин. Опубл. 15.03.1987. [Patent USSR 1296832 G01B 1/28, Laptev A. G., Boichenko S. G., Semenov V. D., Marinin A. G., Losin O. D., Published 03/15/1987].
2. Kochetkov A. V., Troshin A. A., Zakharov O. V., Defect and Diff usion Forum, 2021, vol. 410, pp. 872–877. https://doi.org/10.4028/www.scientifi c.net/DDF.410.872
3. Lou S., Jiang X., Scott P. J., Measurement, 2013, vol. 46, pp. 993–1001. https://doi.org/10.1016/j.measurement.2012.10.001
4. Dietzsch M., Gerlach M., Groger S., Wear, 2008, vol. 264, pp. 411–415. https://doi.org/10.1016/j.wear.2006.08.042
5. Lou S., Jiang X., Scott P. J., Journal of Physics: Conference Series, 2014, vol. 483, 012020. https://doi.org/10.1088/1742-6596/483/1/012020
6. Podulka P., Metrology and Measurement Systems, 2020, vol. 27, pp. 243–263. https://doi.org/10.24425/mms.2020.132772
7. Порошин В. В., Богомолов Д. Ю., Лысенко В. Г. Исследование погрешности фильтрации текстуры поверхности пространственным фильтром Гаусса // Измерительная техника. 2017. № 8. С. 19–23. [Poroshin V. V., Bogomolov D. Y., Lysenko V. G., Measurement Techniques, 2017, vol. 60, pp. 777– 784. https://doi.org/10.1007/s11018-017-1270-8].
8. Pawlus P., Reizer R., Wieczorowski M., Precision Engineering, 2021, vol. 72, pp. 807–822. https://doi.org/10.1016/j.precisioneng.2021.08.001
9. Bolotov M. A., Pechenin V. A., Murzin S. P., Computer Optics, 2016, vol. 40, pp. 360–369. https://doi.org/10.18287/2412-6179-2016-40-3-360-369
10. Leach R. K., Bourell D., Carmignato S., Donmez A., Senin N., Dewulf W., CIRP Annals, 2019, vol. 68, pp. 677–700. https://doi.org/10.1016/j.cirp.2019.05.004
11. Okunkova A., Volosova M., Peretyagin P., Zhirnov I., Podrabinnik P., Fedorov S. V., Gusarov A., Advanced Materials Letters, 2016, vol. 7, pp. 111–115. https://doi.org/10.5185/amlett.2016.6143
12. Lou S., Jiang X., Scott P. J., Measurement, 2013, vol. 46. pp. 1002–1008. https://doi.org/10.1016/j.measurement.2012.09.015
13. Radhakrishnan V., International Journal of Machine Tool Design and Research, 1972, vol. 12, pp. 151–159. https://doi.org/10.1016/0020-7357(72)90030-3
14. Srinivasan V., Discrete morphological fi lters for metrology, Proceedings of the sixth IMEKO ISMQC symposium on metrology for quality control in production, TU Wein, Austria, September 8–10, 1998.
15. Kumar J., Shunmugam M. S., International Journal of Machine Tools and Manufacture, 2006, vol. 46, pp. 260–270. https://doi.org/10.1016/j.ijmachtools.2005.05.025
16. Jiang X., Lou S., Scott P. J., Measurement Science and Technology, 2012, vol. 23, 015003. https://doi.org/10.1088/0957-0233/23/1/015003
17. Марков Б. Н., Меликова О. Н., Шулепов А. В. Алгоритм построения морфологического дискового фильтра для анализа шероховатости поверхности // Измерительная техника. 2017. № 5. С. 30–33. [Markov B. N., Melikova O. N., Shulepov A. V., Measurement Techniques, 2017, vol. 60, pp. 451–456. https://doi.org/10.1007/s11018-017-1216-1].
18. Лукьянов B. C., Лысенко В. Г. Исследование влияния
19. аппроксимации на погрешность измерения параметров шероховатости дискретным методом // Измерительная техника. 1982. № 2. C. 16–19. [Luk’yanov V. S., Lysenko V. G., Measurement Techniques, 1982, vol. 25, pp. 106–110. https://doi.org/10.1007/BF00828988].
20. Порошин В. В., Богомолов Д. Ю., Порошин О. В., Лысенко В. Г. Применение морфологической пространственной фильтрации неровностей поверхности для трёхмерной параметрической оценки текстуры // Метрология. 2016. № 2. С. 3–14. [Poroshin V. V., Bogomolov D. Y., Poroshin O. V., Lysenko V. G., Measurement Techniques, 2016, vol. 59, pp. 637–643. https://doi.org/10.1007/s11018-016-1023-0].
21. Zakharchenko M. Yu., Kochetkov A. V., Salov P. M., Zakharov O. V., Materials Today: Proceedings, 2021, vol. 38, pp. 1866– 1870. https://doi.org/10.1016/j.matpr.2020.08.488
22. Lou S., Jiang X., Scott P. J., Precision Engineering, 2012, vol. 36, pp. 414–423. https://doi.org/10.1016/j.precisioneng.2012.01.003
Review
For citations:
Zakharov О.V., Laptev A.G., Lysenko V.G., Milovanova E.A., Tabachnikova N.A. Discrete algorithm for disk morphological filter based on piecewise linear interpolation. Izmeritel`naya Tekhnika. 2022;(8):35-40. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-8-35-40