

Level-measuring installation UUE1r-N-20 based on a laser interferometric measuring system
https://doi.org/10.32446/0368-1025it.2022-9-45-51
Abstract
Methods of increasing the accuracy of liquid level measurements are considered. The level-measuring installation UUE1r-N-20 with a direct change in the liquid level in the range of 0–20 m with a measuring system based on the XL-80 laser interferometry measuring system is presented. The principle of operation of the measuring system of the level-measuring installation is based on measuring the linear movements of the flu oat in the liquid relative to the zero reference point of the level measuring installation. A mathematical model is given for determining the liquid level using a level-measuring installation, taking into account the info hence of environmental parameters on the elements of the measuring system. The metrological characteristics of the level-measuring installation, including the uncertainty of liquid level measurements, are calculated. The confidence limits of the total measurement error of a liquid level unit with a confidence probability of 0.95 are ±0.11 mm when transferring a liquid level unit to standards or liquid level measuring instruments with a fixed zero reference point and ±0.044 mm when transferring a liquid level unit to standards or liquid level measuring instruments that do not have a fixed zero reference point.
About the Authors
V. Sh. BikkulovRussian Federation
Vadim Sh. Bikkulov
Kazan
A. V. Kondakov
Russian Federation
Alexander V. Kondakov
Kazan
References
1. . Bikkulov V. Sh., Kondakov A. V., Garanin I. O., Migranov V. M., Opisanie gosudarstvennogo spetsial’nogo etalona edinitsy dliny (urovnya) v diapazone 0,01–20 m, Zakonodatel’naya i prikladnaya metrologiya, 2014, no. 2 (129), pp. 9–11. (In Russ.)
2. Bikkulov V. Sh., Kondakov A. V., Frometa Planche I., Automation, тelemechanization and communication in oil industry, 2018, no. 3, pp. 15–17. (In Russ.) https://doi.org/10.30713/0132-2222-2018-3-15-17
3. Koronkevich V. P., Poleshuk A. G., Sedukhin A. G., Lenkova G. A., Lazernye interferometricheskie i difraktsionnye sistemy, Computer Optics, 2010, vol. 34, no. 1, pp. 4–23. (In Russ.)
4. Romanova R. G., Marsutdinova L. R., Sitnikova E. Yu., Metrologicheskoe obespechenie sredstv izmerenii urovnya zhidkikh i sypuchikh veshchestv, Vestnik tekhnologicheskogo universiteta, 2020, vol. 23, no. 6, pp. 100–106. (In Russ.)
5. Makartichyan S. V., Zhabin S. S., Kuznetsova N. S., Sravnitel’nyi analiz sushchestvuyushchikh metodov izmereniya urovnya zhidkostei v rezervuarakh, Energo- i resursosberezhenie: promyshlennost’ i transport, 2021, no. 2(35), pp. 36–41. (In Russ.)
6. Vinokurov B. B., Metrologiya i izmeritel’naya tekhnika. Urovnemetriya zhidkikh sred. Uchebnoe posobie dlya akademicheskogo bakalavriata [Metrology and measuring technique. Level measurement of liquids: textbook manual for academic bachelor’s degree], Moscow, Yurait Publ., 2016, 187 p. (In Russ.)
7. Kulikov A. V., Issledovanie tochnosti lazernogo interferometra peremeshchenii, Interekspo Geo-Sibir’, 2014, vol. 5, no. 2, pp. 82–87. (In Russ.)
8. Garanin I. O., Kondakov A. V., Bikkulov V. Sh., Ramazanova L. R., Issledovanie zavisimosti glubiny pogruzheniya poplavka ot atmosfernogo davleniya i otnositel’noi vlazhnosti vozdukha, Vestnik Kazanskogo tekhnologicheskogo universiteta, 2014, vol. 17, no. 2, pp. 126–128. (In Russ.)
9. Mamontov A. A., Yartsev V. P., Maksimova A. A., Vliyanie plotnosti ekstruzionnogo penopolistirola Penopleks® na ego fi zikomekhanicheskie svoistva, Transactions TSTU, 2014, vol. 20, no. 2, pp. 342–348. (In Russ.)
10. Kudryashova Zh. F., Chunovkina A. G., Measurement Techniques, 2003, vol. 46, no. 6, pp. 559–561. https://doi.org/10.1023/A:1025455726761
Review
For citations:
Bikkulov V.Sh., Kondakov A.V. Level-measuring installation UUE1r-N-20 based on a laser interferometric measuring system. Izmeritel`naya Tekhnika. 2022;(9):45-51. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-9-45-51