

Technique for fast selection of blur coefficients of kernel functions of nonparametric regression
https://doi.org/10.32446/0368-1025it.2022-8-17-22
Abstract
To increase the computational efficiency of nonparametric regression, a method has been developed for fast selecting the blur coefficients of the kernel functions of nonparametric regression when restoring unambiguous stochastic dependencies. The application of the technique allows to significantly reduce the time spent in the synthesis of nonparametric regression in comparison with the traditional approach. The basis of the proposed methodology is the procedure for estimating the optimal blur coefficients of kernel functions for nonparametric estimation of the joint probability density of a family of dependent random variables with normal distribution laws. The method of selection the blur coefficients of nonparametric estimates of two dimensional probability density and regression of dependent random variables is investigated. The regularities of the influence of parameters of distributions of random variables and errors of their estimation on the efficiency indicators of the developed methodology are established. It is shown that the advantage of the proposed technique over the traditional approach is especially significant at small and large noise levels of the values of the function being restored.
About the Authors
A. V. LapkoRussian Federation
Aleksandr V. Lapko
Krasnoyarsk
V. A. Lapko
Russian Federation
Vasiliy A. Lapko
Krasnoyarsk
References
1. Härdle W., Applied Nonparametric Regression, Cambridge, Cambridge University Press, 1990, 434 p.
2. Lapko A. V., Lapko V. A., Izmeritel’naya Tekhnika, 2022, no. 2, pp. 3–7. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-2-3-7
3. Lapko A. V., Lapko V. A., Avtometriya, 2022, vol. 58, no. 2, pp. 93–103. (In Russ.) https://doi.org/10.15372/AUT20220211
4. Silverman B. W., Density estimation for statistics and data analysis, London, Chapman & Hall, 1986, 175 p.
5. Sheather S., Jones M., Journal of Royal Statistical Society Series B, 1991, vol. 53, no. 3, pp. 683–690. https://doi.org/10.1111/j.2517-6161.1991.tb01857.x
6. Sheather S. J., Statistical Science, 2004, vol. 19, no. 4, pp. 588–597. https://doi.org/10.1214/088342304000000297
7. Terrell G. R., Scott, D. W., Oversmoothed Nonparametric Density Estimates, Journal of the American Statistical Association, 1985, vol. 80, pp. 209–214.
8. Jones M. C., Marron J. S., Sheather S. J., A Brief Survey of Bandwidth Selection for Density Estimation, Journal of the American Statistical Association, 1996, vol. 91, pp. 401–407.
9. Scott D. W. Multivariate Density Estimation: Theory, Practice, and Visualization, New York, Wiley, 1992, 317 p.
10. Dobrovidov A. V., Ruds’ko I. M., Automation and Remote Control, 2010, vol. 71, no. 2, pp 209–224. https://doi.org/10.1134/S0005117910020050
11. Lapko A. V., Lapko V. A., Bakhtina A. V., Informatika i sistemy upravleniya, 2022, vol. 71, no. 1, pp. 90–100. (In Russ.) https://doi.org/10.22250/18142400_2022_71_1_90
12. Lapko A. V., Lapko V. A., Bakhtina A. V., Measurement Techniques, 2022, vol. 64, no. 12, pp. 958–962. https://doi.org/10.1007/s11018-022-02029-0
13. Parzen E., Annals of Mathematical Statistics, 1962, vol. 33, nо. 3, pp. 1065-1076. https://doi.org/10.1214/aoms/1177704472
14. Epanechnikov V. A., Theory of Probability & Its Applications, 1969, vol. 14, no. 1, pp. 153–158. https://doi.org/10.1137/1114019
15. Gnedenko B. V., Course of probability theory: textbook, Moscow, Nauka Fizmatlit Publ., 1965, 400 p. (In Russ.)
16. Pugachev V. S., Probability theory and mathematical statistics, Moscow, Fizmatlit Publ., 2002, 496 p. (In Russ.)
17. Nadaraya E. A., Proc. Computer Center of the USSR Academy of Sciences, 1965, iss. 5, pp. 56-68. (In Russ.)
Review
For citations:
Lapko A.V., Lapko V.A. Technique for fast selection of blur coefficients of kernel functions of nonparametric regression. Izmeritel`naya Tekhnika. 2022;(8):17-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-8-17-22