

Two-parameters sampling on the base of measurements of Rayleigh distributed parts dimensions
https://doi.org/10.32446/0368-1025it.2022-9-24-32
Abstract
In the article, the methods of technological processes monitoring in the modern machine-building manufacturing are observed. The task of constructing the procedures of measurement (variable) inspection for the lots with two-parameter generalization of Rayleigh distribution of quality characteristic is set and solved. The test statistics distributions have been explored. The sufficiently accurate computational procedures for the distribution functions evaluation are described. The operating characteristics of two-parameter sampling plan and the previously constructed one-parameter plan are compared. It is shown that the same features are provided under comparable conditions with only a slight increase of the sample size. The results are applicable in acceptance sampling of lots of parts with external and internal cylindrical surfaces.
Keywords
About the Authors
S. N. GrigorievRussian Federation
Sergey N. Grigoriev
Moscow
P. N. Emelianov
Russian Federation
Petr N. Emelianov
Moscow
D. A. Masterenko
Russian Federation
Dmitry A. Masterenko
Moscow
S. E. Ped
Russian Federation
Sergey E. Ped
Moscow
References
1. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N., Measurement Techniques, 2013, vol. 55, no. 11, рр. 1311–1315. https://doi.org/10.1007/s11018-013-0126-0
2. Grigoriev S. N., Teleshevskii V. I., Measurement Techniques, 2011, vol. 54, no. 7, pp. 744–749. https://doi.org/10.1007/s11018-011-9798-5
3. Teleshevsky V. I., Measuring informatics in mechanical engineering, Vestnik of MSTU “STANKIN”, 2008, no. 1. pp. 33–38. (In Russ.)
4. Grigoriev S. N., Migranov M. S., Shekhtman S. R., Migranov A. M., Ershov A. A., Pivkin P. M., Proc. SPIE 11914, SPIE Future Sensing Technologies 2021, 14 November 2021, 119141C. https://doi.org/10.1117/12.2605753
5. Grigoriev S. N., Sinopalnikov V. A., Tereshin M. V., Gurin V. D., Measurement Techniques, 2012, vol. 55, no. 5, pp. 555–558. https://doi.org/10.1007/s11018-012-9999-6
6. Leun V. I., Nikolaeva E. V., Tignibidin A. V., The trend in the development of theory and practice of creating control devices to improve the accuracy and productivity of grinding operations of parts and tools in technological processes of mechanical engineering, instrumentation and tool production, Dynamics of systems, mechanisms and machines, 2012, no. 2, pp. 251–254. (In Russ.)
7. Grigoriev S. N., Martinov G. M., Proc. CIRP, 2014, no. 14, pp. 517–522. https://doi.org/10.1016/j.procir.2014.03.051
8. Grigoriev S. N., Martinov G. M., Proc. CIRP, 2016, no. 41, pp. 858–863. https://doi.org/10.1016/j.procir.2015.08.031
9. Wheeler D. J., Chambers D. S., Understanding Statistical Process Control, Addison-Wesley, 1990, 310 p.
10. Adler Yu. P., Shper V. L., Prakticheskoe rukovodstvo po statisticheskomu upravleniyu processami [Practical guide to statistical process management], Moscow, Alpina Publisher, 2019. 320 p. (In Russ.)
11. Lapidus V. A., Sistema Shuharta [Shewhart’s System], N. Novgorod, Priority Publ., 2004, 65 p. (In Russ.)
12. Deming W. E., Overcoming the crisis: A new paradigm of managing people, systems and processes, Cambridge, MA, MIT Center for Advanced Engineering Study, 1982.
13. Rozno M. I., Statisticheskij kontrol’ kachestva produkcii po al’ternativnomu priznaku pri izmenyonnom dopuske (metod AKUD) [Statistical quality control of products on an alternative basis with a modifi ed tolerance (AKUD method)], Reliability and quality control, 1992, no. 2, pp. 44–52. (In Russ.)
14. Steiner S. H., Geyer P. L., Wesolowsky G. O., International Journal of Production Research, 1994, vol. 32, no. 1, pp. 75–91. https://doi.org/10.1080/00207549408956917
15. Steiner S. H., Geyer P. L., Wesolowsky G. O., Quality and Reliability Engineering International, 1996, vol. 12, no. 5, pp. 345–353. https://doi.org/10.1002/(SICI)1099-1638(199609)12:5<345::AIDQRE11> 3.0.CO;2-M
16. Rozno M. I., Regulation of processes based on data on an alternative feature by a narrowed tolerance, Methods of quality management, 2001, no. 12, pp. 27–33. (In Russ.)
17. Grigorovich V. G., Kozlova N. O., Yudin S. V., Metod ocenki centra gruppirovaniya razmerov v usloviyah proizvodstva na ARL [Method of estimating the size grouping center in production conditions at ARL], Avtomatizaciya tekhnologicheskih processov v mashinostroenii, Volgograd State Technical University, 1995, pp. 197–202. (In Russ.)
18. Grigorovich V. G., Kozlova N. O., Yudin S. V., Informacionnostatisticheskie metody regulirovaniya tekhnologicheskih processov [Information and statistical methods of regulation of technological processes], Forging and stamping production, 2000, no. 9, pp. 27–29. (In Russ.)
19. Masterenko D. A., Metel A. S., Mechanics & Industry, 2017, vol. 18, no. 7, 702. https://doi.org/10.1051/meca/2017054
20. Masterenko D. A., Comparison of methods for regulating processes based on measuring control information on an alternative basis by the narrowed tolerance, Vestnik of MSTU “STANKIN”, 2017, no. 3. pp. 74–79. (In Russ.)
21. Grigoriev S. N., Emelyanov P.N., Masterenko D. A., Ped’ S. E., Sampling by variables for Rayleigh distributed lots, Izmeritel’naja tehnika, 2022, no. 6, pp. 28–35. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-28-35
22. Rozanov Yu. A., Teoriya veroyatnostej, sluchajnye processy i matematicheskaya statistika [Probability theory, random processes and mathematical statistics], Moscow, Nauka Publ., 1985. 320 p. (In Russ.)
23. Orlov A. I., Prikladnaya statistika [Applied statistics], Moscow, Examen Publ., 2004, 483 p. (In Russ.)
24. Raza S. M., Butt M. M., Siddiqi A. F., Shewhart Control Charts for Rayleigh Distribution in the Presence of Type I Censored Data, Journal of ISOSS, 2016, vol. 2(2), pp. 210–217.
25. Kozlov M. V., Prohorov A. V., Vvedenie v matematicheskujy statistiku [Introduction to Mathematical Statistics], Moscow, MGU Publ., 1987, 264 p. (In Russ.)
Review
For citations:
Grigoriev S.N., Emelianov P.N., Masterenko D.A., Ped S.E. Two-parameters sampling on the base of measurements of Rayleigh distributed parts dimensions. Izmeritel`naya Tekhnika. 2022;(9):24-32. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-9-24-32