

The State primary special standard for the unit of electrical capacitance at the frequency range from 1 to 300 MHz GET 107-2019
https://doi.org/10.32446/0368-1025it.2022-8-9-16
Abstract
The composition and characteristics of the State primary special standard of electrical capacity units in the frequency range from 1 to 300 MHz GET 107-2019 are described. The upper limit of the frequency range of electrical capacitance reproduction has been expanded to 300 MHz due to the development of a new reference installation with an operating frequency of 300 MHz. The principle of operation of the installation and algorithms for processing measurements are considered. The non-excluded relative systematic error of GET 107-2019 is from 5·10–5 to 1·10–3 (depending on the operating frequency), the relative standard deviation of the measurement result when reproducing the unit is from 3·10–6 to 3·10–4, which exceeds the capabilities of national standards of other countries. An updated State Verification Scheme for measuring electrical capacitance in the frequency range from 1 to 300 MHz has been developed and approved. GET 107-2019 and its subordinate standards and measuring instruments are widely used in micro- and nanoelectronics, radioelectronic industry, instrument engineering, in the development and production of modern materials and devices, in biomedicine.
About the Authors
A. M. ShilovRussian Federation
Alexander M. Shilov
Novosibirsk
S. D. Zagaynov
Russian Federation
Sergey D. Zagaynov
Novosibirsk
A. E. Mandrueva
Russian Federation
Anastasiya Ev. Mandrueva
Novosibirsk
D. V. Ryabchinskiy
Russian Federation
Dmitriy V. Ryabchinskiy
Novosibirsk
E. Y. Uliyanov
Russian Federation
Eugeniy Yu. Uliyanov
Novosibirsk
References
1. Shilov A. M., Ul’janov E. Ju., Mandrueva A. E., Zagajnov S. D., Razrabotka i issledovanie universal’nogo avtomatizirovannogo komparatora dlja peredachi edinicy jelektricheskoj emkosti ot GPSE edinicy jelektricheskoj emkosti (GET 107-2019) v diapazone chastot ot 1 do 300 MGc rabochim jetalonam – meram jelektricheskoj emkosti, Proc. the XII All-Russian Scientifi c and Technical Conference “Metrology in Radioelectronics”, Mendeleevo, September 21–23, 2021, Mendeleevo, FSUE “VNIIFTRI” Publ., 2021, pp. 266–270. (In Russ.)
2. Kovchavcev A. P., Struktury metall–dijelektrik–poluprovodnik na osnove arsenida indija: Doctoral dissertation in Mathematics and Physics Sciences (IFP SO RAN, Novosibirsk, 2003). (In Russ.)
3. Talanov V. V., Schwartz A. R., IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, pp. 1224– 1229. https://doi.org/10.1109/TMTT.2009.2017352
4. Guenther K.-M., Witte H., Krost A., Kontermann S., Schade W., Appl. Phys. Lett., 2012, vol. 100, no. 4, 042101. https://doi.org/10.1063/1.3679380
5. Goldman E. I., Levashova A. I., Levashov S. A., Naryshkina V. G., Chucheva G. V., Sovremennye informatsionnye i elektronnye tekhnologii, 2014, vol. 2, no. 15, pp. 130–131. (In Russ.)
6. Cherepin N. V., Vakuumnye svojstva materialov dlja jelektronnyh priborov [Vacuum properties of materials for electronic devices], Moscow, Sovetskoe radio Publ., 1966, 350 p. (In Russ.)
7. Demin S., Juzhalkin A., Pashkov S. et. al, Issledovanie vysokochastotnyh kvarcevyh rezonatorov sreza SC, Komponents and Tehnologies, 2021, no. 2(235), pp. 44–47. (In Russ.)
8. Reinecke N., Mewes D., Measurement Science and Technology, 1996, vol. 7, no. 3, pp. 233–246. https://doi.org/10.1088/0957-0233/7/3/004
9. Kaatze U., Measurement Science and Technology, 2013, no. 24(1), 012005. https://doi.org/10.1088/0957-0233/24/1/012005
10. Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R., Measurement Science and Technology, 2013, no. 24(6), 065302. https://doi.org/10.1088/0957-0233/24/6/065302
11. Surdu M. N., Lameko A. L., Surdu, D. M., Kursin S. N., Measurement Techniques, 2012, vol. 55, pp. 816–825. https://doi.org/10.1007/s11018-012-0045-5
12. Lukhverchik I. N., Sosnovskaya T. G., Comparison of impedances of heterogeneous quantities when disseminating electric capacitance unit from the (active) electric resistance unit, Metrologija i priborostroenie, 2020, no. 2(89), pp. 20–23. (In Russ.)
13. Vihareva N. A., Vestnik SSUGT, 2020, vol. 25, no 4, pp. 221– 228. (In Russ.) https://doi.org/10.33764/2411-1759-2020-25-4-221-228
14. Morozov N. N., Mazanik A. I., Akimbaev E. Zh., The composition of the editorial board, 2021, no. 2(49). pp. 55–60. (In Russ.)
15. Ignatov L. M., Kuskov A. S., Patent RU 71773 U1, Byull. Izobret., no. 8 (2008).
16. Kyaw P. A., Stein A. L. F., Sullivan C. R., IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 2519–2526, https://doi.org/10.1109/APEC.2017.7931052
17. Clarke A., Eberhardt C., Microscopy Techniques for Materials Science, Woodhead Publishing, 2002.
18. Wong Jee Keen Raymond, Chandan Kumar Chakrabarty, Goh Chin Hock, Ahmad Basri Ghani, Measurement, 2013, vol. 46, no. 10, pp. 3796–3801. https://doi.org/10.1016/j.measurement.2013.06.039
19. Heath J., Zabierowski P., Capacitance Spectroscopy of ThinFilm Solar Cells, In Advanced Characterization Techniques for Thin Film Solar Cells (eds D. Abou-Ras, T. Kirchartz and U. Rau), 2011, pp. 81–105. https://doi.org/10.1002/9783527636280.ch4
20. Ushakov P. A., Baboshkin G. D., Stojchev S. V., Gravshin V. G., Dvukhpolyusnye ehlementy s fraktal’nym impedansom i ikh primenenie v radiotekhnike i svyazi, Vestnik IzhGTU imeni M. T. Kalashnikova, 2020, vol. 23, no. 1, pp. 75–105 (In Russ.)
21. Final Report COOMET.EM-S8 (469/RU-a/09), available at: https://www.bipm.org/utils/common/pdf/fi nal_reports/EM/S8/ COOMET.EM-S8.pdf (accessed: 21.07.2022).
22. Keller M. W., Eichenberger A. L., Martinis J. M., Zimmerman N. M., Science, 1999, no. 285(5434), pp. 1706–1709. https://doi.org/10.1126/science.285.5434.1706
23. Keller M. W., Zimmerman N. M., Eichenberger A. L., Metrologia, 2007, vol. 44(6), pp. 505–512. https://doi.org/10.1088/0026-1394/44/6/010
24. Scherer H., Schurr J., Ahlers F. J., Metrologia, 2017, vol. 54(3), pp. 322–338. https://doi.org/10.1088/1681-7575/AA65F9
25. Yamahata G., Giblin S. P., Kataoka M., Karasawa T., Fujiwara A., Applied Physics Letters, 2016, vol. 109(1), 013101. https://doi.org/10.1063/1.4953872
26. Sherstobitov S. V., Karpova M. V., Tertychnaya M. A., Measurement Techniques, 2020, vol. 63, no. 2, pp. 145–150. https://doi.org/10.1007/s11018-020-01764-6
27. Kibble B. P., Metrologia, 1998, vol. 35(1), 17. https://doi.org/10.1088/0026-1394/35/1/3
28. Callegaro L., Measurement Science and Technology, 2009, no. 20(2), 022002. https://doi.org/10.1088/0957-0233/20/2/022002
29. Awan S. A., Kibble B. P., IEEE Transactions on Instrumentation and Measurement, April 2005, vol. 54, no. 2, pp. 516– 520. https://doi.org/10.1109/TIM.2005.843582
30. Özkan T., Gulmez G., Turhan E., Gulmez Ya., Measurement Science and Technology, 2007, no 18(11), pp. 3496–3500. https://doi.org/10.1088/0957-0233/18/11/033
31. Woods D., Proc. IEE – Part C: Monographs, September 1957, vol. 104, iss. 6, pp. 538–541. https://doi.org/10.1049/pi-c.1957.0062
32. Grokhol’skii A. L., Measurement Techniques, 1960, vol. 3, no. 6, pp. 518–523. https://doi.org/10.1007/BF00976494
33. Ciklauri G. N., Ehff ektivnye parametry koaksial’nykh kondensatorov v shirokom diapazone chastot, Proceedings of the Second Republic Scientifi c-Technical Conference on Metrology, Tbilisi, November 27-29, 1972, Tbil. fi lial VNIIM im. D. I. Mendeleeva, 1972. (In Russ.)
34. Weinschel B. O., Air-fi lled coaxial lines as absolute impedance standards, Microwave Journal, vol. 7, no. 4, pp. 47–50, 1964.
35. Abrosimov Je. A., etc., Vysokochastotnyj raschetnyj kondensator postoyannoj emkosti, Proc. All-Union Scientifi c-Technical Conference on Radiotechnical Measurements, Novosibirsk, Siberian Scientifi c Research Institute of Metrology, 1970, vol. 1, p. 11. (In Russ.)
36. Ciklauri G. N., Sovremennye metody i apparatura dlja izmerenija parametrov radiocepej, Сollection of reports of the All-Union Symposium, Novosibirsk, September 18–22, 1973, Novosibirsk, Siberian Scientifi c Research Institute of Metrology, 1974. (In Russ.)
37. Rabinovich B. E., Metodika summirovaniya chastnykh pogreshnostej v oblasti radiotekhnicheskikh izmerenij, Voprosy radiojelektroniki. Serija Radioizmeritel’naja tehnika, 1961, vol. 4, pp. 3–22. (In Russ.)
Review
For citations:
Shilov A.M., Zagaynov S.D., Mandrueva A.E., Ryabchinskiy D.V., Uliyanov E.Y. The State primary special standard for the unit of electrical capacitance at the frequency range from 1 to 300 MHz GET 107-2019. Izmeritel`naya Tekhnika. 2022;(8):9-16. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-8-9-16