Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The State primary special standard for the unit of electrical capacitance at the frequency range from 1 to 300 MHz GET 107-2019

https://doi.org/10.32446/0368-1025it.2022-8-9-16

Abstract

The composition and characteristics of the State primary special standard of electrical capacity units in the frequency range from 1 to 300 MHz GET 107-2019 are  described. The upper limit of the frequency range of electrical capacitance reproduction has been expanded to 300 MHz due to the development of a new reference installation with an operating frequency of 300 MHz. The principle of operation of the installation and algorithms for processing measurements are considered. The non-excluded relative systematic error of GET 107-2019 is from 5·10–5 to 1·10–3 (depending on the operating frequency), the relative standard deviation of the measurement result when reproducing the unit is from 3·10–6 to 3·10–4, which exceeds the capabilities of national standards of other countries. An updated State Verification Scheme for measuring electrical capacitance in the frequency range from 1 to 300 MHz has been developed and approved. GET 107-2019 and its subordinate standards and measuring instruments are widely used in micro- and nanoelectronics, radioelectronic industry, instrument engineering, in the development and production of modern materials and devices, in biomedicine.

About the Authors

A. M. Shilov
The West-Siberian Branch of FSUE “VNIIFTRI”; Novosibirsk State University
Russian Federation

Alexander M. Shilov

Novosibirsk



S. D. Zagaynov
The West-Siberian Branch of FSUE “VNIIFTRI”
Russian Federation

Sergey D. Zagaynov

Novosibirsk



A. E. Mandrueva
The West-Siberian Branch of FSUE “VNIIFTRI”
Russian Federation

Anastasiya Ev. Mandrueva

Novosibirsk



D. V. Ryabchinskiy
The West-Siberian Branch of FSUE “VNIIFTRI”
Russian Federation

Dmitriy V. Ryabchinskiy

Novosibirsk



E. Y. Uliyanov
The West-Siberian Branch of FSUE “VNIIFTRI”
Russian Federation

Eugeniy Yu. Uliyanov

Novosibirsk



References

1. Shilov A. M., Ul’janov E. Ju., Mandrueva A. E., Zagajnov S. D., Razrabotka i issledovanie universal’nogo avtomatizirovannogo komparatora dlja peredachi edinicy jelektricheskoj emkosti ot GPSE edinicy jelektricheskoj emkosti (GET 107-2019) v diapazone chastot ot 1 do 300 MGc rabochim jetalonam – meram jelektricheskoj emkosti, Proc. the XII All-Russian Scientifi c and Technical Conference “Metrology in Radioelectronics”, Mendeleevo, September 21–23, 2021, Mendeleevo, FSUE “VNIIFTRI” Publ., 2021, pp. 266–270. (In Russ.)

2. Kovchavcev A. P., Struktury metall–dijelektrik–poluprovodnik na osnove arsenida indija: Doctoral dissertation in Mathematics and Physics Sciences (IFP SO RAN, Novosibirsk, 2003). (In Russ.)

3. Talanov V. V., Schwartz A. R., IEEE Transactions on Microwave Theory and Techniques, 2009, vol. 57, no. 5, pp. 1224– 1229. https://doi.org/10.1109/TMTT.2009.2017352

4. Guenther K.-M., Witte H., Krost A., Kontermann S., Schade W., Appl. Phys. Lett., 2012, vol. 100, no. 4, 042101. https://doi.org/10.1063/1.3679380

5. Goldman E. I., Levashova A. I., Levashov S. A., Naryshkina V. G., Chucheva G. V., Sovremennye informatsionnye i elektronnye tekhnologii, 2014, vol. 2, no. 15, pp. 130–131. (In Russ.)

6. Cherepin N. V., Vakuumnye svojstva materialov dlja jelektronnyh priborov [Vacuum properties of materials for electronic devices], Moscow, Sovetskoe radio Publ., 1966, 350 p. (In Russ.)

7. Demin S., Juzhalkin A., Pashkov S. et. al, Issledovanie vysokochastotnyh kvarcevyh rezonatorov sreza SC, Komponents and Tehnologies, 2021, no. 2(235), pp. 44–47. (In Russ.)

8. Reinecke N., Mewes D., Measurement Science and Technology, 1996, vol. 7, no. 3, pp. 233–246. https://doi.org/10.1088/0957-0233/7/3/004

9. Kaatze U., Measurement Science and Technology, 2013, no. 24(1), 012005. https://doi.org/10.1088/0957-0233/24/1/012005

10. Wajman R., Fiderek P., Fidos H., Jaworski T., Nowakowski J., Sankowski D., Banasiak R., Measurement Science and Technology, 2013, no. 24(6), 065302. https://doi.org/10.1088/0957-0233/24/6/065302

11. Surdu M. N., Lameko A. L., Surdu, D. M., Kursin S. N., Measurement Techniques, 2012, vol. 55, pp. 816–825. https://doi.org/10.1007/s11018-012-0045-5

12. Lukhverchik I. N., Sosnovskaya T. G., Comparison of impedances of heterogeneous quantities when disseminating electric capacitance unit from the (active) electric resistance unit, Metrologija i priborostroenie, 2020, no. 2(89), pp. 20–23. (In Russ.)

13. Vihareva N. A., Vestnik SSUGT, 2020, vol. 25, no 4, pp. 221– 228. (In Russ.) https://doi.org/10.33764/2411-1759-2020-25-4-221-228

14. Morozov N. N., Mazanik A. I., Akimbaev E. Zh., The composition of the editorial board, 2021, no. 2(49). pp. 55–60. (In Russ.)

15. Ignatov L. M., Kuskov A. S., Patent RU 71773 U1, Byull. Izobret., no. 8 (2008).

16. Kyaw P. A., Stein A. L. F., Sullivan C. R., IEEE Applied Power Electronics Conference and Exposition (APEC), 2017, pp. 2519–2526, https://doi.org/10.1109/APEC.2017.7931052

17. Clarke A., Eberhardt C., Microscopy Techniques for Materials Science, Woodhead Publishing, 2002.

18. Wong Jee Keen Raymond, Chandan Kumar Chakrabarty, Goh Chin Hock, Ahmad Basri Ghani, Measurement, 2013, vol. 46, no. 10, pp. 3796–3801. https://doi.org/10.1016/j.measurement.2013.06.039

19. Heath J., Zabierowski P., Capacitance Spectroscopy of ThinFilm Solar Cells, In Advanced Characterization Techniques for Thin Film Solar Cells (eds D. Abou-Ras, T. Kirchartz and U. Rau), 2011, pp. 81–105. https://doi.org/10.1002/9783527636280.ch4

20. Ushakov P. A., Baboshkin G. D., Stojchev S. V., Gravshin V. G., Dvukhpolyusnye ehlementy s fraktal’nym impedansom i ikh primenenie v radiotekhnike i svyazi, Vestnik IzhGTU imeni M. T. Kalashnikova, 2020, vol. 23, no. 1, pp. 75–105 (In Russ.)

21. Final Report COOMET.EM-S8 (469/RU-a/09), available at: https://www.bipm.org/utils/common/pdf/fi nal_reports/EM/S8/ COOMET.EM-S8.pdf (accessed: 21.07.2022).

22. Keller M. W., Eichenberger A. L., Martinis J. M., Zimmerman N. M., Science, 1999, no. 285(5434), pp. 1706–1709. https://doi.org/10.1126/science.285.5434.1706

23. Keller M. W., Zimmerman N. M., Eichenberger A. L., Metrologia, 2007, vol. 44(6), pp. 505–512. https://doi.org/10.1088/0026-1394/44/6/010

24. Scherer H., Schurr J., Ahlers F. J., Metrologia, 2017, vol. 54(3), pp. 322–338. https://doi.org/10.1088/1681-7575/AA65F9

25. Yamahata G., Giblin S. P., Kataoka M., Karasawa T., Fujiwara A., Applied Physics Letters, 2016, vol. 109(1), 013101. https://doi.org/10.1063/1.4953872

26. Sherstobitov S. V., Karpova M. V., Tertychnaya M. A., Measurement Techniques, 2020, vol. 63, no. 2, pp. 145–150. https://doi.org/10.1007/s11018-020-01764-6

27. Kibble B. P., Metrologia, 1998, vol. 35(1), 17. https://doi.org/10.1088/0026-1394/35/1/3

28. Callegaro L., Measurement Science and Technology, 2009, no. 20(2), 022002. https://doi.org/10.1088/0957-0233/20/2/022002

29. Awan S. A., Kibble B. P., IEEE Transactions on Instrumentation and Measurement, April 2005, vol. 54, no. 2, pp. 516– 520. https://doi.org/10.1109/TIM.2005.843582

30. Özkan T., Gulmez G., Turhan E., Gulmez Ya., Measurement Science and Technology, 2007, no 18(11), pp. 3496–3500. https://doi.org/10.1088/0957-0233/18/11/033

31. Woods D., Proc. IEE – Part C: Monographs, September 1957, vol. 104, iss. 6, pp. 538–541. https://doi.org/10.1049/pi-c.1957.0062

32. Grokhol’skii A. L., Measurement Techniques, 1960, vol. 3, no. 6, pp. 518–523. https://doi.org/10.1007/BF00976494

33. Ciklauri G. N., Ehff ektivnye parametry koaksial’nykh kondensatorov v shirokom diapazone chastot, Proceedings of the Second Republic Scientifi c-Technical Conference on Metrology, Tbilisi, November 27-29, 1972, Tbil. fi lial VNIIM im. D. I. Mendeleeva, 1972. (In Russ.)

34. Weinschel B. O., Air-fi lled coaxial lines as absolute impedance standards, Microwave Journal, vol. 7, no. 4, pp. 47–50, 1964.

35. Abrosimov Je. A., etc., Vysokochastotnyj raschetnyj kondensator postoyannoj emkosti, Proc. All-Union Scientifi c-Technical Conference on Radiotechnical Measurements, Novosibirsk, Siberian Scientifi c Research Institute of Metrology, 1970, vol. 1, p. 11. (In Russ.)

36. Ciklauri G. N., Sovremennye metody i apparatura dlja izmerenija parametrov radiocepej, Сollection of reports of the All-Union Symposium, Novosibirsk, September 18–22, 1973, Novosibirsk, Siberian Scientifi c Research Institute of Metrology, 1974. (In Russ.)

37. Rabinovich B. E., Metodika summirovaniya chastnykh pogreshnostej v oblasti radiotekhnicheskikh izmerenij, Voprosy radiojelektroniki. Serija Radioizmeritel’naja tehnika, 1961, vol. 4, pp. 3–22. (In Russ.)


Review

For citations:


Shilov A.M., Zagaynov S.D., Mandrueva A.E., Ryabchinskiy D.V., Uliyanov E.Y. The State primary special standard for the unit of electrical capacitance at the frequency range from 1 to 300 MHz GET 107-2019. Izmeritel`naya Tekhnika. 2022;(8):9-16. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-8-9-16

Views: 254


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)