Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

An adaptive method for measuring the pitch frequency using a two-level autoregressive of a speech signal

https://doi.org/10.32446/0368-1025it.2022-6-60-66

Abstract

The problem of determining the fundamental frequency of a speech signal in the presence of white Gaussian noise is considered. A new method for its measurement is proposed, which takes into account the periodic structure of the power spectrum of voiced speech frames and is based on the principle of harmonic energy accumulation in the frequency domain. For this purpose, a procedure for equalizing its spectral envelope was introduced into the speech signal processing algorithm using a two-level autoregressive observations model: within one and several periods of the fundamental tone. At the same time, the adaptation of the order of auto regression of the lower level to the observed frame is implemented. An example of the practical implementation of the adaptive method based on the Berg method is considered. With the use of author's software, an experiment was set up and carried out, and experimental estimates of the effectiveness of the new method were obtained. It is shown that, due to its adaptation, a gain in threshold signals of 5–10 dB is achieved.

About the Authors

A. V. Savchenko
National Research University Higher School of Economics
Russian Federation

Andrey V. Savchenko

Nizhniy Novgorod



V. V. Savchenko
Nizhny Novgorod State Linguistic University
Russian Federation

Vladimir V. Savchenko

Nizhniy Novgorod



References

1. Rabiner L. R., Shafer R. W., Theory and Applications of Digital Speech Processing, Boston, Pearson, 2010, 1060 p.

2. Schenkman B. N., Gidla V.K., Applied Acoustics, 2020, vol. 163, 107214. https://doi.org/10.1016/j.apacoust.2020.107214

3. Souza G. V., Duarte J. M., Viegas F. et al, Journal of Voice, 2020, vol. 34, no. 4, pp. 641–648. https://doi.org/10.1016/j.jvoice.2018.12.007

4. Smith S. R., The Journal of the Acoustical Society of America, 2021, vol. 150, A113. https://doi.org/10.1121/10.0007806

5. Савченко А. В., Савченко В. В. Метод измерения частоты основного тона речевого сигнала для систем акустического анализа речи // Измерительная техника. 2019. № 3. С. 59–63. https://doi.org/10.32446/0368-1025it.2019-3-59-63 [Savchenko А. V., Savchenko V. V., Measurement Techniques, 2019, vol. 62, no. 3, рр. 282–288. https://doi.org/10.1007/s11018-019-01617-x].

6. Yadav I. C., Shahnawazuddin S., Pradhan G., Digital Signal Processing, 2019, vol. 86, pp. 55–64. https://doi.org/10.1016/j.dsp.2018.12.013

7. Savchenko V. V., Radioelectron. Commun. Syst., 2020, vol. 63, pp. 532–542. https://doi.org/10.3103/S0735272720100039

8. Gibson J. D., Information, 2016, vol. 32, no. 7. https://doi.org/10.3390/info7020032

9. Gu Yu., Wei H. L., Information Sciences, 2018, vol. 451–452, pp. 195–209. https://doi.org/10.1016/j.ins.2018.04.007

10. Cui S., Li E., Kang X., IEEE International Conference on Multimedia and Expo (ICME), London, United Kingdom, 2020, pp. 1–6. https://doi.org/10.1109/ICME46284.2020.9102765

11. Savchenko V. V., Savchenko A. V., Journal of Communications Technology and Electronics, 2020, vol. 65, no. 11, pp. 1311–1317. https://doi.org/10.1134/S1064226920110157

12. Savchenko V. V., Savchenko А. V., Radioelectron. Commun. Syst., 2019, vol. 62, no. 5, pp. 276–286. https://doi.org/10.3103/S0735272719050042

13. Savchenko V. V., Radioelectron. Commun. Syst., 2021, vol. 64, no. 11, pp. 592–603. https://doi.org/10.3103/S0735272721110030

14. Kashani H. B., Sayadiyan A., Computer Speech & Language, 2018, vol. 50, pp. 105–125. https://doi.org/10.1016/j.csl.2017.12.008

15. Gibson J., Information, 2019, vol. 179, no. 10. https://doi.org/10.3390/info10050179

16. Markel J. D., Gray A. H., Fundamental Frequency Estimation. In: Linear Prediction of Speech. Communication and Cybernetics, Springer, Berlin, Heidelberg, 1976, vol. 12. https://doi.org/10.1007/978-3-642-66286-7_8

17. Esfandiari M., Vorobyov S. A., Karimi M., Signal Processing, 2020, vol. 171, 107480. https://doi.org/10.1016/j.sigpro.2020.107480

18. Jaramillo A. E., Nielsen J. K., Christensen M. G., 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5. https://doi.org/10.23919/EUSIPCO.2019.8902763

19. Palaparthi A., Titze I. R., Speech Communication, 2020, vol. 123, pp. 98–108. https://doi.org/10.1016/j.specom.2020.07.003

20. Ширман Я. Д. и др. Радиоэлектронные системы. Осно- вы построения и теория: Справочник. Под ред. Я. Д. Ширмана. Изд. 2-е, перераб. и доп. М.: Радиотехника, 2007. 657 c. [Radioelektronnye sistemy. Osnovy postroeniya i teoriya. Spravochnik, Ed. Ya. D. Shirman, 2nd ed., Moscow, Radiotekhnika Publ., 2007, 657 c.].

21. Sinha R., Shahnawazuddin S., Computer Speech & Language, 2018, vol. 48, pp. 103–121. https://doi.org/10.1016/j.csl.2017.10.007

22. Oppenheim A. V., Schafer R. W., IEEE Signal Processing Magazine, 2004, vol. 21, no. 5, pp. 95–106. https://doi.org/10.1109/MSP.2004.1328092

23. Parlak C., Altun Yu., Mathematical Problems in Engineering, 2021, vol. 2021, 6658951. https://doi.org/10.1155/2021/6658951

24. Marple S. L., Digital spectral analysis with applications, 2nd ed., Mineola, New York, Dover Publications, 2019.

25. Levkov D. G., Panin A. G., Tkachev I. I., arXiv:2010.15145v4 [astro-ph.HE], 2021. https://arxiv.org/abs/2010.15145

26. Савченко Л. В., Савченко А. В. Метод измерений показателя динамики эмоционального состояния пользователя по его речевому сигналу в режиме реального времени // Измерительная техника. 2021. № 4. С. 72–79. https://doi.org/10.32446/0368-1025it.2021-4-49-57 [Savchenko L. V., Savchenko A. V., Measurement Techniques, 2021, vol. 64, no. 12. https://doi.org/10.1007/s11018-021-01935-z].

27. Deng B., Jouvet D., Laprie Y., Steiner I. and Sini A., IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 5605–5609. https://doi.org/10.1109/ICASSP.2017.7953229

28. Akçay M. B., Oğuz K., Speech Communication, 2020, vol. 116, pp. 56–76. https://doi.org/10.1016/j.specom.2019.12.001


Review

For citations:


Savchenko A.V., Savchenko V.V. An adaptive method for measuring the pitch frequency using a two-level autoregressive of a speech signal. Izmeritel`naya Tekhnika. 2022;(6):60-66. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-60-66

Views: 168


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)