

An adaptive method for measuring the pitch frequency using a two-level autoregressive of a speech signal
https://doi.org/10.32446/0368-1025it.2022-6-60-66
Abstract
The problem of determining the fundamental frequency of a speech signal in the presence of white Gaussian noise is considered. A new method for its measurement is proposed, which takes into account the periodic structure of the power spectrum of voiced speech frames and is based on the principle of harmonic energy accumulation in the frequency domain. For this purpose, a procedure for equalizing its spectral envelope was introduced into the speech signal processing algorithm using a two-level autoregressive observations model: within one and several periods of the fundamental tone. At the same time, the adaptation of the order of auto regression of the lower level to the observed frame is implemented. An example of the practical implementation of the adaptive method based on the Berg method is considered. With the use of author's software, an experiment was set up and carried out, and experimental estimates of the effectiveness of the new method were obtained. It is shown that, due to its adaptation, a gain in threshold signals of 5–10 dB is achieved.
Keywords
About the Authors
A. V. SavchenkoRussian Federation
Andrey V. Savchenko
Nizhniy Novgorod
V. V. Savchenko
Russian Federation
Vladimir V. Savchenko
Nizhniy Novgorod
References
1. Rabiner L. R., Shafer R. W., Theory and Applications of Digital Speech Processing, Boston, Pearson, 2010, 1060 p.
2. Schenkman B. N., Gidla V.K., Applied Acoustics, 2020, vol. 163, 107214. https://doi.org/10.1016/j.apacoust.2020.107214
3. Souza G. V., Duarte J. M., Viegas F. et al, Journal of Voice, 2020, vol. 34, no. 4, pp. 641–648. https://doi.org/10.1016/j.jvoice.2018.12.007
4. Smith S. R., The Journal of the Acoustical Society of America, 2021, vol. 150, A113. https://doi.org/10.1121/10.0007806
5. Савченко А. В., Савченко В. В. Метод измерения частоты основного тона речевого сигнала для систем акустического анализа речи // Измерительная техника. 2019. № 3. С. 59–63. https://doi.org/10.32446/0368-1025it.2019-3-59-63 [Savchenko А. V., Savchenko V. V., Measurement Techniques, 2019, vol. 62, no. 3, рр. 282–288. https://doi.org/10.1007/s11018-019-01617-x].
6. Yadav I. C., Shahnawazuddin S., Pradhan G., Digital Signal Processing, 2019, vol. 86, pp. 55–64. https://doi.org/10.1016/j.dsp.2018.12.013
7. Savchenko V. V., Radioelectron. Commun. Syst., 2020, vol. 63, pp. 532–542. https://doi.org/10.3103/S0735272720100039
8. Gibson J. D., Information, 2016, vol. 32, no. 7. https://doi.org/10.3390/info7020032
9. Gu Yu., Wei H. L., Information Sciences, 2018, vol. 451–452, pp. 195–209. https://doi.org/10.1016/j.ins.2018.04.007
10. Cui S., Li E., Kang X., IEEE International Conference on Multimedia and Expo (ICME), London, United Kingdom, 2020, pp. 1–6. https://doi.org/10.1109/ICME46284.2020.9102765
11. Savchenko V. V., Savchenko A. V., Journal of Communications Technology and Electronics, 2020, vol. 65, no. 11, pp. 1311–1317. https://doi.org/10.1134/S1064226920110157
12. Savchenko V. V., Savchenko А. V., Radioelectron. Commun. Syst., 2019, vol. 62, no. 5, pp. 276–286. https://doi.org/10.3103/S0735272719050042
13. Savchenko V. V., Radioelectron. Commun. Syst., 2021, vol. 64, no. 11, pp. 592–603. https://doi.org/10.3103/S0735272721110030
14. Kashani H. B., Sayadiyan A., Computer Speech & Language, 2018, vol. 50, pp. 105–125. https://doi.org/10.1016/j.csl.2017.12.008
15. Gibson J., Information, 2019, vol. 179, no. 10. https://doi.org/10.3390/info10050179
16. Markel J. D., Gray A. H., Fundamental Frequency Estimation. In: Linear Prediction of Speech. Communication and Cybernetics, Springer, Berlin, Heidelberg, 1976, vol. 12. https://doi.org/10.1007/978-3-642-66286-7_8
17. Esfandiari M., Vorobyov S. A., Karimi M., Signal Processing, 2020, vol. 171, 107480. https://doi.org/10.1016/j.sigpro.2020.107480
18. Jaramillo A. E., Nielsen J. K., Christensen M. G., 27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5. https://doi.org/10.23919/EUSIPCO.2019.8902763
19. Palaparthi A., Titze I. R., Speech Communication, 2020, vol. 123, pp. 98–108. https://doi.org/10.1016/j.specom.2020.07.003
20. Ширман Я. Д. и др. Радиоэлектронные системы. Осно- вы построения и теория: Справочник. Под ред. Я. Д. Ширмана. Изд. 2-е, перераб. и доп. М.: Радиотехника, 2007. 657 c. [Radioelektronnye sistemy. Osnovy postroeniya i teoriya. Spravochnik, Ed. Ya. D. Shirman, 2nd ed., Moscow, Radiotekhnika Publ., 2007, 657 c.].
21. Sinha R., Shahnawazuddin S., Computer Speech & Language, 2018, vol. 48, pp. 103–121. https://doi.org/10.1016/j.csl.2017.10.007
22. Oppenheim A. V., Schafer R. W., IEEE Signal Processing Magazine, 2004, vol. 21, no. 5, pp. 95–106. https://doi.org/10.1109/MSP.2004.1328092
23. Parlak C., Altun Yu., Mathematical Problems in Engineering, 2021, vol. 2021, 6658951. https://doi.org/10.1155/2021/6658951
24. Marple S. L., Digital spectral analysis with applications, 2nd ed., Mineola, New York, Dover Publications, 2019.
25. Levkov D. G., Panin A. G., Tkachev I. I., arXiv:2010.15145v4 [astro-ph.HE], 2021. https://arxiv.org/abs/2010.15145
26. Савченко Л. В., Савченко А. В. Метод измерений показателя динамики эмоционального состояния пользователя по его речевому сигналу в режиме реального времени // Измерительная техника. 2021. № 4. С. 72–79. https://doi.org/10.32446/0368-1025it.2021-4-49-57 [Savchenko L. V., Savchenko A. V., Measurement Techniques, 2021, vol. 64, no. 12. https://doi.org/10.1007/s11018-021-01935-z].
27. Deng B., Jouvet D., Laprie Y., Steiner I. and Sini A., IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp. 5605–5609. https://doi.org/10.1109/ICASSP.2017.7953229
28. Akçay M. B., Oğuz K., Speech Communication, 2020, vol. 116, pp. 56–76. https://doi.org/10.1016/j.specom.2019.12.001
Review
For citations:
Savchenko A.V., Savchenko V.V. An adaptive method for measuring the pitch frequency using a two-level autoregressive of a speech signal. Izmeritel`naya Tekhnika. 2022;(6):60-66. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-60-66