

Improvement of the method of measuring the temperature distribution of polymer composite sheet materials when heated by microwave radiation
https://doi.org/10.32446/0368-1025it.2022-6-46-51
Abstract
The actual problem of accelerating and reducing the energy costs of the sheet polymer composite material heat treatment technological process is considered. It is shown that to solve this problem, it is advisable to use the microwave radiation energy as a heating source. The main advantages of the microwave method of the sheet polymer composite material heat treatment in comparison with traditional methods are considered. The design of a continuous-acting microwave installation with transverse interaction has been developed, which forms a uniform temperature distribution in the volume of sheet composite material, which makes it possible to obtain products with higher physical and mechanical characteristics. To calculate the temperature distributions over the width and thickness of the sheet material, the model and the method of loaded long lines are used, respectively, taking into account the change in the dielectric parameters of the composite material from temperature, and the theory of the electromagnetic field. A method for measuring the temperature distribution of a sheet polymer material is proposed. The results of theoretical and experimental studies of the temperature distribution over the width and thickness of a sheet polymer material with a width of 500 mm and a thickness of 30 mm, a density of 2400 kg/m3 at the frequency of electromagnetic field oscillations of 2450 MHz are presented. The obtained experimental results showed a high efficiency of microwave radiation usage for technological processes of the sheet polymer composite material heat treatment. Technologies that use microwave radiation can be applied for heat treatment of products made of concrete, foam concrete, as well as polymer composite materials based on carbon or basalt filaments, and thermosetting epoxy resins as a binder.
Keywords
About the Authors
A. V. MamontovRussian Federation
Alexandr V. Mamontov
Moscow
Y. N. Nefedov
Russian Federation
Vladimir N. Nefedov
Moscow
S. A. Khritkin
Russian Federation
Sergey A. Khritkin
Moscow
References
1. Kerber M. L., Vinogradov V. M., Golovkin G. S., Polimernye kompozitsionnye materialy: struktura, svoistva, tekhnologiya [Polymer composite materials: structure, properties, technology], ed. A. A. Berlin, St. Petersburg, Professija Publ., 2008, 560 p. (In Russ.)
2. Perepelkin K. E., Armiruyushchie volokna i voloknistye polimernye kompozity: monografi ya [Reinforcing fi bers and fi brous polymer composites: monograph], St. Petersburg, Nauchnye osnovy i tekhnologii Publ., 2009, 380 p. (In. Russ.)
3. Mikhailin Yu. A., Spetsial’nye polimernye kompozitsionnye materialy [Special polymer composite materials], St. Petersburg, Nauchnye osnovy i tekhnologii Publ., 2009, 658 p. (In Russ.)
4. Petrov M. G., Study of strength and durability of uni-directional fi berglass plastics by using the kinetic concept of fracture, Mechanics of composite materials and structures, 2003, vol. 9, no. 3, pp. 376–397. (In Russ.)
5. Mikhailin Yu. A., Termoustoichivye polimery i polimernye materialy [Heat-resistant polymers and polymer materials], St. Petersburg, Professija Publ., 2006, 624 p. (In Russ.)
6. Kolosova A. S., Sokol’skaya M. K., Vitkalova I. A., Torlova A. S., Pikalov E. S, Modern polymer composite materials and their application, International Journal of Applied and Fundamental Research, 2018, no. 5-1, pp. 245–256. (In.Russ.)
7. Reznik S. V., Rumyantsev S. A., A heat mathematical model of polymer composite cylinder during microwave treatment, Nauka i obrazovanie, 2014, no. 1, pp. 6–21. (In Russ.) https://doi.org/10.7463/0114.0658448
8. Mikhailovskii K. V., Reznik S. V., Prediction of the Thermal Regimes of Binder Cure Process for Reception of Parts from Polymeric Composite Materials Using Microwave Radiation, Thermal processes in Engineering, 2014, vol. 6, no. 8, pp. 378–384. (In Russ.)
9. Dvorko I. M., Poluchenie polimernykh materialov i izdelii otverzhdeniem termoreaktivnykh kompozitsii pod deistviem ehlektricheskikh polei [Obtaining polymeric materials and products by curing thermosetting compositions under the infl uence of electric fi elds], Plasticheskie massy, 1998, no. 8, pp. 16–21. (In Russ.)
10. Nizkointensivnye SVCH-tekhnologii (problemy i realizatsii) [Low-intensity microwave technologies (Problems and realizations)], ed. G. A. Morozov, Yu. E. Sedel’nikov, Moscow, Radiotekhnika Publ., 2003, 112 p. (In Russ.)
11. Bolasodun B., Nesbitt A., Wikinson A., Day R., Eff ect Of Curing Method On Physical And Mechanical Properties Of Araldite DLS 772 / 4 4 DDS Epoxy System, International journal of scientifi c and technology research, 2013, vol. 2, iss. 2, pp. 12–18.
12. Lavrent’ev V. A., Kalganova S. G., Primenenie ehnergii SVCH ehlektromagnitnykh kolebanii dlya vozdeistviya na protsess otverzhdeniya ehpoksidnykh smol [Application of microwave energy of electromagnetic waves to infl uence the curing process of epoxy resins], Ehlektro- i teplotekhnologicheskie protsessy i ustanovki, Saratov, Sarat. gos. tekhn. Un. Publ., 2005, vol. 2, pp .67–70. (In Russ.)
13. Guzeva T. A., Improvement of technological modes of curing blanks of parts made of organoplastics under the action of microwave radiation, Extented abstract of candidate’s dissertation in Technical Sciences (Bauman Moscow State Technical University, Moscow, 2014). (In Russ.)
14. Kalganova S. G., Vliyanie SVCH vozdeistviya ehlektromagnitnogo polya na kinetiku otverzhdeniya ehpoksidnoi smoly [Infl uence of microwave exposure to an electromagnetic fi eld on the kinetics of epoxy resin curing], Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta, 2006, vol. 1, no. 1, pp. 90–95. (In Russ.)
15. Loik D. A., Mamontov A. V., Nefedov V. N., Nefedov M. V., RF Patent no. 83380, Inventions. Utility Models, no. 15 (2009).
16. M amontov A. V., Nefedov V. N., Nazarov I. V., Potapova T. A., Mikrovolnovye tekhnologii, Monografi ya [Microwave technology], Moscow, Nauchno-issledovatel’skii institut perspektivnykh materialov i tekhnologii Moskovskogo instituta ehlektroniki i matematiki (tekhnicheskogo universiteta) Publ., 2008, 308 p. (In Russ.)
17. Nefedov V. N., Valeev G. G., Korneev S. V., Karpenko Yu. V., RF Patent no. 2060600, Byull. Izobret., no. 5 (1996).
18. Arkhangel’skii Yu. S., Ustanovki sverkhvysokochastotnogo diehlektricheskogo nagreva [Microwave Dielectric Heating Units], Saratov, Saratovskii gosudarstvennyi tekhnicheskii universitet Publ., 2010, 279 p. (In Russ.)
19. Grigor’ev A. D., Ehlektrodinamika i mikrovolnovaya tekhnika [Electrodynamics and micrmicrowave technology], Moscow, Lan’ Publ., 2007, 704 p. (In Russ.)
Review
For citations:
Mamontov A.V., Nefedov Y.N., Khritkin S.A. Improvement of the method of measuring the temperature distribution of polymer composite sheet materials when heated by microwave radiation. Izmeritel`naya Tekhnika. 2022;(6):46-51. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-46-51