

Adaptive iterative method of selecting weight coefficients for digital holograms binarization using error diffusion
https://doi.org/32446/0368-1025it.2022-6-41-45
Abstract
The development of optical methods and technologies allows to register, transform, store, transmit and reconstruct large amounts of information. One of the most common carriers of experimentally recorded information is digital holograms, which are recorded using photoregisters of various types. The size of digital hologram files is several tens of megabytes, so for the storage and transmission of holographic data via communication channels, holograms should be compressed. Binarization is one of the options for reducing the holograms size. In this work, a binarization method is proposed. It uses iterative adaptive selection of weight coefficients of the error diffusion procedure. The method has been tested on optically digital holograms that were recorded under various conditions. Quality of reconstructed images was estimated both numerically and optically after digital holograms displaying using a digital micromirror device. The proposed method can be used for compressing and storing holographic data, for measuring the characteristics and shape of micro- and macro objects, for fast optical image reconstruction using a digital micro mirror device, etc.
Keywords
About the Authors
N. N. EvtikhievRussian Federation
Nikolay N. Evtikhiev
Moscow
V. G. Rodin
Russian Federation
Vladislav G. Rodin
Moscow
E. A. Savchenkova
Russian Federation
Ekaterina A. Savchenkova
Moscow
R. S. Starikov
Russian Federation
Rostislav S. Starikov
Moscow
P. A. Cheremkhin
Russian Federation
Pavel A. Cheremkhin
Moscow
References
1. Schnars U., Falldorf C., Watson J., Jüptner W., Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, Springer-Verlag, 2015, 226 p. https://doi.org/10.1007/978-3-662-44693-5
2. Шойдин С. А., Пазоев А. Л. Способ дистанционного формирования голографической записи // Автометрия. 2021. Т. 57, № 1. С. 92-102. https://doi.org/10.15372/AUT20210110 [Shoidin S. A., Pazoev A. L., Optoelectronics, Instrumentation and Data Processing, 2021, vol. 57, no. 1, pp. 80–88. https://doi.org/10.3103/S8756699021010118].
3. Gómez-Valencia E. M., Trejos S., Velez-Zea A., Barrera-Ramírez J. F., Torroba R., J. Opt., 2021, vol. 23 (7), 075702. https://doi.org/10.1088/2040-8986/ac0874
4. Cheremkhin P. A., Kurbatova E. A., Sci. Rep., 2019, vol. 9, 7561. https://doi.org/10.1038/s41598-019-44119-0
5. Liu Z., Watson J., Allen A., IEEE J. Ocean Eng., 2018, vol. 43, pp. 83–92. https://doi.org/10.1109/JOE.2017.2690537
6. Naughton T. J., Frauel Y., Javidi B., Tajahuerce E., Appl. Opt., 2002, vol. 41, pp. 4124–4132. https://doi.org/10.1364/AO.41.004124
7. Min K., Park J. H., Opt. Express, 2020, vol. 28, pp. 38140–38154. https://doi.org/10.1364/OE.411312
8. Cheremkhin P. A., Kurbatova E. A., Evtikhiev N. N., Krasnov V. V., Rodin V. G., Starikov R. S., J. Opt., 2021, vol. 23, 075703. https://doi.org/10.1088/2040-8986/ac05d1
9. Евтихиев Н. Н., Краснов В. В., Рябцев И. П., Родин В. Г., Стариков Р. С., Черёмхин П. А. Измерение модуляции фазового жидкокристаллического модулятора света Santec SLM-200 и анализ его применимости для реконструкции изображений с дифракционных элементов // Измерительная техника. 2021. № 5. С. 4–8. https://doi.org/10.32446/0368-1025it.2021-5-4-8 [Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A., Measurement Techniques, 2021, vol. 64, no. 5, pp. 346–351. https://doi.org/10.1007/s11018-021-01940-2].
10. Гибин И. С., Козик В. И., Нежевенко Е. С. Генерация изображений в инфракрасном диапазоне на основе микрозеркальных технологий // Автометрия. 2020. Т. 56. № 1. С. 3–12. https://doi.org/10.15372/AUT20200101 [Gibin I. S., Kozik V. I., Nezhevenko E. S., Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 1, pp. 1–9. https://doi.org/10.3103/S875669902001001X].
11. Cheremkhin P. A., Kurbatova E. A., Opt. Lasers Eng., 2019, vol. 115, pp. 119–130. https://doi.org/10.1016/j.optlaseng.2018.11.019
12. Никитаев В. Г., Проничев А. Н., Тамразова О. Б., Сергеев В. Ю., Отченашенко А. И., Дружинина Е. А., Козырева А. В., Соломатин М. А., Козлов В. С. Модель выделения структурных элементов – линий – на цифровых изображениях в онкодерматологии // Измерительная техника. 2021. № 6. С. 66–71. https://doi.org/10.32446/0368-1025it.2021-6-66-71 [Nikitaev V. G., Pronichev A. N., Tamrazova O. B., Sergeev V. Yu., Otchenashenko A. I., Druzhinina E. A., Kozyreva A. V., Solomatin M. A., Kozlov V. S., Measurement Techniques, 2021, vol. 64, pp. 516–521. https://doi.org/10.1007/s11018-021-01962-w].
13. Floyd R. W., Steinberg L., An adaptive algorithm for spatial grey scale, Proc. Soc. Inf. Disp., 1976, vol. 17, pp. 75–77.
14. Liu K., He Z., Cao L., Chin. Opt. Lett., 2021, vol. 9, 050501. https://doi.org/10.3788/COL202119.050501
15. Knuth D. E., ACM Trans. Grap., 1987, vol. 6, no. 4, pp. 245–273. https://doi.org/10.1145/35039.35040
16. Курбатова Е. А., Родин В. Г., Черёмхин П. А. Итеративная бинаризация цифровых голограмм с применением метода диффузии ошибки // Автометрия. 2020. Т. 56. № 2. C. 118–125. https://doi.org/10.15372/AUT20200213 [Kurbatova E. A., Rodin V. G., Cheremkhin P. A., Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 2, pp. 205–211. https://doi.org/10.3103/S8756699020020120].
17. Yang G., Jiao S., Liu J.-P., Lei T., Yuan X., Appl. Opt., 2019, vol. 58, pp. 5547–5555. https://doi.org/10.1364/AO.58.005547
18. Verrier N., Atlan M., Appl. Opt. 2011, vol. 50, pp. H136–H146. https://doi.org/10.1364/AO.50.00H136
19. Cheremkhin P. A., Evtikhiev N. N., Kurbatova E. A., Krasnov V. V., Rodin V. G., Starikov R. S., J. Imaging, 2022, vol. 8 (2), 15. https://doi.org/10.3390/jimaging8020015
20. Huynh-Thu Q., Ghanbari M., Electron. Lett., 2008, vol. 44. pp. 800–801. https://doi.org/10.1049/el:20080522
Review
For citations:
Evtikhiev N.N., Rodin V.G., Savchenkova E.A., Starikov R.S., Cheremkhin P.A. Adaptive iterative method of selecting weight coefficients for digital holograms binarization using error diffusion. Izmeritel`naya Tekhnika. 2022;(6):41-45. (In Russ.) https://doi.org/32446/0368-1025it.2022-6-41-45