Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Adaptive iterative method of selecting weight coefficients for digital holograms binarization using error diffusion

https://doi.org/32446/0368-1025it.2022-6-41-45

Abstract

The development of optical methods and technologies allows to register, transform, store, transmit and reconstruct large amounts of information. One of the most common carriers of experimentally recorded information is digital holograms, which are recorded using photoregisters of various types. The size of digital hologram files is several tens of megabytes, so for the storage and transmission of holographic data via communication channels, holograms should be compressed. Binarization is one of the options for reducing the holograms size. In this work, a binarization method is proposed. It uses iterative adaptive selection of weight coefficients of the error diffusion procedure. The method has been tested on optically digital holograms that were recorded under various conditions. Quality of reconstructed images was estimated both numerically and optically after digital holograms displaying using a digital micromirror device. The proposed method can be used for compressing and storing holographic data, for measuring the characteristics and shape of micro- and macro objects, for fast optical image reconstruction using a digital micro mirror device, etc.

About the Authors

N. N. Evtikhiev
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Nikolay N. Evtikhiev

Moscow



V. G. Rodin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Vladislav G. Rodin

Moscow



E. A. Savchenkova
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Ekaterina A. Savchenkova

Moscow



R. S. Starikov
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Rostislav S. Starikov

Moscow



P. A. Cheremkhin
National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Russian Federation

Pavel A. Cheremkhin

Moscow



References

1. Schnars U., Falldorf C., Watson J., Jüptner W., Digital Holography and Wavefront Sensing: Principles, Techniques and Applications, Springer-Verlag, 2015, 226 p. https://doi.org/10.1007/978-3-662-44693-5

2. Шойдин С. А., Пазоев А. Л. Способ дистанционного формирования голографической записи // Автометрия. 2021. Т. 57, № 1. С. 92-102. https://doi.org/10.15372/AUT20210110 [Shoidin S. A., Pazoev A. L., Optoelectronics, Instrumentation and Data Processing, 2021, vol. 57, no. 1, pp. 80–88. https://doi.org/10.3103/S8756699021010118].

3. Gómez-Valencia E. M., Trejos S., Velez-Zea A., Barrera-Ramírez J. F., Torroba R., J. Opt., 2021, vol. 23 (7), 075702. https://doi.org/10.1088/2040-8986/ac0874

4. Cheremkhin P. A., Kurbatova E. A., Sci. Rep., 2019, vol. 9, 7561. https://doi.org/10.1038/s41598-019-44119-0

5. Liu Z., Watson J., Allen A., IEEE J. Ocean Eng., 2018, vol. 43, pp. 83–92. https://doi.org/10.1109/JOE.2017.2690537

6. Naughton T. J., Frauel Y., Javidi B., Tajahuerce E., Appl. Opt., 2002, vol. 41, pp. 4124–4132. https://doi.org/10.1364/AO.41.004124

7. Min K., Park J. H., Opt. Express, 2020, vol. 28, pp. 38140–38154. https://doi.org/10.1364/OE.411312

8. Cheremkhin P. A., Kurbatova E. A., Evtikhiev N. N., Krasnov V. V., Rodin V. G., Starikov R. S., J. Opt., 2021, vol. 23, 075703. https://doi.org/10.1088/2040-8986/ac05d1

9. Евтихиев Н. Н., Краснов В. В., Рябцев И. П., Родин В. Г., Стариков Р. С., Черёмхин П. А. Измерение модуляции фазового жидкокристаллического модулятора света Santec SLM-200 и анализ его применимости для реконструкции изображений с дифракционных элементов // Измерительная техника. 2021. № 5. С. 4–8. https://doi.org/10.32446/0368-1025it.2021-5-4-8 [Evtikhiev N. N., Krasnov V. V., Ryabcev I. P., Rodin V. G., Starikov R. S., Cheremkhin P. A., Measurement Techniques, 2021, vol. 64, no. 5, pp. 346–351. https://doi.org/10.1007/s11018-021-01940-2].

10. Гибин И. С., Козик В. И., Нежевенко Е. С. Генерация изображений в инфракрасном диапазоне на основе микрозеркальных технологий // Автометрия. 2020. Т. 56. № 1. С. 3–12. https://doi.org/10.15372/AUT20200101 [Gibin I. S., Kozik V. I., Nezhevenko E. S., Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 1, pp. 1–9. https://doi.org/10.3103/S875669902001001X].

11. Cheremkhin P. A., Kurbatova E. A., Opt. Lasers Eng., 2019, vol. 115, pp. 119–130. https://doi.org/10.1016/j.optlaseng.2018.11.019

12. Никитаев В. Г., Проничев А. Н., Тамразова О. Б., Сергеев В. Ю., Отченашенко А. И., Дружинина Е. А., Козырева А. В., Соломатин М. А., Козлов В. С. Модель выделения структурных элементов – линий – на цифровых изображениях в онкодерматологии // Измерительная техника. 2021. № 6. С. 66–71. https://doi.org/10.32446/0368-1025it.2021-6-66-71 [Nikitaev V. G., Pronichev A. N., Tamrazova O. B., Sergeev V. Yu., Otchenashenko A. I., Druzhinina E. A., Kozyreva A. V., Solomatin M. A., Kozlov V. S., Measurement Techniques, 2021, vol. 64, pp. 516–521. https://doi.org/10.1007/s11018-021-01962-w].

13. Floyd R. W., Steinberg L., An adaptive algorithm for spatial grey scale, Proc. Soc. Inf. Disp., 1976, vol. 17, pp. 75–77.

14. Liu K., He Z., Cao L., Chin. Opt. Lett., 2021, vol. 9, 050501. https://doi.org/10.3788/COL202119.050501

15. Knuth D. E., ACM Trans. Grap., 1987, vol. 6, no. 4, pp. 245–273. https://doi.org/10.1145/35039.35040

16. Курбатова Е. А., Родин В. Г., Черёмхин П. А. Итеративная бинаризация цифровых голограмм с применением метода диффузии ошибки // Автометрия. 2020. Т. 56. № 2. C. 118–125. https://doi.org/10.15372/AUT20200213 [Kurbatova E. A., Rodin V. G., Cheremkhin P. A., Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 2, pp. 205–211. https://doi.org/10.3103/S8756699020020120].

17. Yang G., Jiao S., Liu J.-P., Lei T., Yuan X., Appl. Opt., 2019, vol. 58, pp. 5547–5555. https://doi.org/10.1364/AO.58.005547

18. Verrier N., Atlan M., Appl. Opt. 2011, vol. 50, pp. H136–H146. https://doi.org/10.1364/AO.50.00H136

19. Cheremkhin P. A., Evtikhiev N. N., Kurbatova E. A., Krasnov V. V., Rodin V. G., Starikov R. S., J. Imaging, 2022, vol. 8 (2), 15. https://doi.org/10.3390/jimaging8020015

20. Huynh-Thu Q., Ghanbari M., Electron. Lett., 2008, vol. 44. pp. 800–801. https://doi.org/10.1049/el:20080522


Review

For citations:


Evtikhiev N.N., Rodin V.G., Savchenkova E.A., Starikov R.S., Cheremkhin P.A. Adaptive iterative method of selecting weight coefficients for digital holograms binarization using error diffusion. Izmeritel`naya Tekhnika. 2022;(6):41-45. (In Russ.) https://doi.org/32446/0368-1025it.2022-6-41-45

Views: 123


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)