

Phase triangulation method with statistical filtering for measurements under conditions of random additive noise and a limited dynamic range of a photodetector
https://doi.org/10.32446/0368-1025it.2022-6-36-40
Abstract
The application of optical methods for measuring the parameters of three-dimensional objects has been studied. Methods for decoding phase images under conditions of additive noise and a limited dynamic range of a photodetector are considered. The existing methods for decoding phase images introduce nonlinear distortions and systematic error into the measurement results under such conditions. A phase triangulation method with statistical data fitering is proposed for measuring the three-dimensional profie of an object under conditions of random additive noise and a limited dynamic range of a hotodetector, which excludes systematic distortions of the measurement results. The method is based on adaptive filtering and statistical analysisof the intensity distribution in the recorded phase images. The error of the method of decoding phase images using statistical data filtering and threshold fi ltering is analyzed analytically. The proposed method can be used to decode data in systems for measuring three-dimensional geometry that implement the phase triangulation method.
About the Authors
S. V. DvoynishnikovRussian Federation
Sergey V. Dvoynishnikov
Novosibirsk
Y. G. Meledin
Russian Federation
Vladimir G. Meledin
Novosibirsk
I. K. Kabardin
Russian Federation
Ivan K. Kabardin
Novosibirsk
V. V. Rakhmanov
Russian Federation
Vitaly V. Rakhmanov
Novosibirsk
V. O. Zuev
Russian Federation
Vladislav O. Zuev
Novosibirsk
References
1. Gorthi S. S., Rastogi P., Optics and Lasers in Engineering, 2010, vol. 48, iss. 2, pp. 133–140. https://doi.org/10.1016/j.optlaseng.2009.09.001
2. D’Apuzzo N., Proceedings SPIE, 2006, vol. 6056, 605605. https://doi.org/10.1117/12.650123
3. Zhang S., Opt. Lasers Eng, 2010, vol. 48 (2), pp. 149–158. https://doi.org/10.1016/J.OPTLASENG.2009.03.008
4. Gruber M., Hausler G., Simple, robust and accurate phasemeasuring triangulation, Optik, 1992, vol. 3, pp. 118–122.
5. Chen L., Liang C., Nguyen X., Shu Y., Wu H.-W., Meas. Sci. Technol., 2010, vol. 21(10), 105309. https://doi.org/10.1088/0957-0233/21/10/105309
6. Двойнишников С. В., Куликов Д. В., Меледин В. Г. Оптоэлектронный метод бесконтактного восстановления профиля поверхности трёхмерных объектов сложной формы // Метрология. 2010. № 4. С. 15–27 [Dvoynishnikov S. V., Kulikov D. V., Meledin V. G., Measurement Techniques, 2010, vol. 53(6), pp. 648–656. https://doi.org/10.1007/S11018-010-9556-0].
7. Двойнишников С. В., Аникин Ю. А., Кабардин И. К., Куликов Д. В., Меледин В. Г. Оптоэлектронный метод бесконтактного измерения профиля поверхности крупногабаритных объектов сложной формы // Измерительная техника. 2016. № 1. С. 17–22 [Dvoinishnikov S. V., Anikin Y. A., Kabardin I. K., Kulikov D. V., Meledin V. G., Measurement Techniques, 2016, vol. 59(1), pp. 21–27. https://doi.org/10.1007/S11018-016-0910-8].
8. Двойнишников С. В., Меледин В. Г., Главный В. Г., Наумов И. В., Чубов А. С. Оценка оптимальной частоты пространственной модуляции излучения 3D-измерений // Измерительная техника. 2015. № 5. С. 24–27 [Dvoinishnikov S. V., Meledin V. G., Glavnyi V. G., Naumov I. V., Chubov A. S., Measurement Techniques, 2015, vol. 58(5), pp. 506–511. https://doi.org/10.1007/S11018-015-0745-8].
9. Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G., Measurement, 2019, vol. 145, pp. 63–70. https://doi.org/10.1016/j.measurement.2019.05.054
10. Lv S., Jiang M., Su C., Zhang L., Zhang F., Sui Q., Jia L., Sensors, 2021, vol. 21, 4463. https://doi.org/10.3390/s21134463
11. Wankhede P., Kodey S., Kurra S, Radhika S., Measurement, 2022, vol. 187, 110273. https://doi.org/10.1016/j.measurement.2021.110273
12. Rudyk A., Semenov A., Kryvinska N., Semenova O., Measurement, 2022, vol. 187, 110271. http://doi.org/10.1016/j.measurement.2021.110271
13. Jiang Y., Wang S., Qin H., Li B., Li Q., Measurement, 2021, vol. 186, 110207. https://doi.org/10.1088/1361-6501%2Fac1b41
14. Dong Y., Li Z., Zhu L., Zhang X., Measurement, 2021, vol. 186, 110199. https://doi.org/10.1016/j.measurement.2021.110199
15. Guo F., Yang B., Zheng W., Liu S., Measurement, 2021, vol. 186, 110165. https://doi.org/10.1016/j.measurement.2021.110165
16. Fan J., F eng Y., Mo J., Wang S., Liang Q., Measurement, 2021, vol. 185, 110029. http://doi.org/10.1016/j.measurement.2021.110029
17. Wang H., Ma J., Yang H., Sun F., Wei Y., Wang L., Measurement, 2021, vol. 185, 110003. https://doi.org/10.1016/j.measurement.2021.110003
18. Shi B., Ma Z., Ni X., Liu J., Liu H., Measurement, 2021, vol. 185, 109938. https://doi.org/10.1016/j.measurement.2021.109938
19. Zhang Y., Fan N., Wu Y., Wu G., Luo H., Yan J., Yang S., Liu F., Measurement, 2021, vol. 171, 108762. https://doi.org/10.1016/j.measurement.2020.108762
20. Luhmann T., ISPRS J. Photogramm. Remote Sens, 2010, vol. 65(6), pp. 558–569. https://doi.org/10.1016/J.ISPRSJPRS.2010.06.003
21. Li B., An Y., Capelleri D., Xu J., Zhang S., Int. J. Intell. Robot. Appl, 2017, vol. 1 (1), pp. 86–103. https://doi.org/10.1007/s41315-016-0001-7
22. Matthias S., Kästner M., Reithmeier E., Measurement, 2015, vol. 73, pp. 239–246. https://doi.org/10.1016/J.MEASUREMENT.2015.05.024
23. Chu C., Yang H., Wang L., Measurement, 2019, vol. 145, pp. 410–418. https://doi.org/10.1016/J.MEASUREMENT.2019.02.058
24. Koutecký T., Paloušek D., Brandejs J., Measurement, 2016, vol. 94, pp. 60–70. https://doi.org/10.1016/J.MEASUREMENT.2016.07.067
25. Cao X., Xie W., Ahmed S. M., Li C. R., Measurement, 2020, vol. 159, 107771. https://doi.org/10.1016/j.measurement.2020.107771
26. Пат. № 2433372 РФ / Двойнишников С. В., Меледин В. Г. // Изобретения. Полезные модели. 2011. № 31 [Dvojnishnikov S. V., Meledin V. G., RF Patent no. 2433372, Byull. Izobret., no. 31 (2011)].
27. Пат. № 2439489 РФ / Двойнишников С. В., Меледин В. Г. // Изобретения. Полезные модели. 2012. № 1 [Dvojnishnikov S. V., Meledin V. G., RF Patent no. 2439489, Byull. Izobret., no. 1 (2012)].
Review
For citations:
Dvoynishnikov S.V., Meledin Y.G., Kabardin I.K., Rakhmanov V.V., Zuev V.O. Phase triangulation method with statistical filtering for measurements under conditions of random additive noise and a limited dynamic range of a photodetector. Izmeritel`naya Tekhnika. 2022;(6):36-40. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-36-40