Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Phase triangulation method with statistical filtering for measurements under conditions of random additive noise and a limited dynamic range of a photodetector

https://doi.org/10.32446/0368-1025it.2022-6-36-40

Abstract

The application of optical methods for measuring the parameters of three-dimensional objects has been studied. Methods for decoding phase images under conditions of additive noise and a limited dynamic range of a photodetector are considered. The existing methods for decoding phase images introduce nonlinear distortions and systematic error into the measurement results under such conditions. A phase triangulation method with statistical data fitering is proposed for measuring the three-dimensional profie of an object under conditions of random additive noise and a limited dynamic range of a hotodetector, which excludes systematic distortions of the measurement results. The method is based on adaptive filtering and statistical analysisof the intensity distribution in the recorded phase images. The error of the method of decoding phase images using statistical data filtering and threshold fi ltering is analyzed analytically. The proposed method can be used to decode data in systems for measuring three-dimensional geometry that implement the phase triangulation method.

About the Authors

S. V. Dvoynishnikov
Kutateladze Institute of thermophysics SB RAS; Novosibirsk State University
Russian Federation

Sergey V. Dvoynishnikov

Novosibirsk



Y. G. Meledin
Kutateladze Institute of thermophysics SB RAS
Russian Federation

Vladimir G. Meledin

Novosibirsk



I. K. Kabardin
Kutateladze Institute of thermophysics SB RAS
Russian Federation

Ivan K. Kabardin

Novosibirsk



V. V. Rakhmanov
Kutateladze Institute of thermophysics SB RAS
Russian Federation

Vitaly V. Rakhmanov

Novosibirsk



V. O. Zuev
Kutateladze Institute of thermophysics SB RAS; Novosibirsk State University
Russian Federation

Vladislav O. Zuev

Novosibirsk



References

1. Gorthi S. S., Rastogi P., Optics and Lasers in Engineering, 2010, vol. 48, iss. 2, pp. 133–140. https://doi.org/10.1016/j.optlaseng.2009.09.001

2. D’Apuzzo N., Proceedings SPIE, 2006, vol. 6056, 605605. https://doi.org/10.1117/12.650123

3. Zhang S., Opt. Lasers Eng, 2010, vol. 48 (2), pp. 149–158. https://doi.org/10.1016/J.OPTLASENG.2009.03.008

4. Gruber M., Hausler G., Simple, robust and accurate phasemeasuring triangulation, Optik, 1992, vol. 3, pp. 118–122.

5. Chen L., Liang C., Nguyen X., Shu Y., Wu H.-W., Meas. Sci. Technol., 2010, vol. 21(10), 105309. https://doi.org/10.1088/0957-0233/21/10/105309

6. Двойнишников С. В., Куликов Д. В., Меледин В. Г. Оптоэлектронный метод бесконтактного восстановления профиля поверхности трёхмерных объектов сложной формы // Метрология. 2010. № 4. С. 15–27 [Dvoynishnikov S. V., Kulikov D. V., Meledin V. G., Measurement Techniques, 2010, vol. 53(6), pp. 648–656. https://doi.org/10.1007/S11018-010-9556-0].

7. Двойнишников С. В., Аникин Ю. А., Кабардин И. К., Куликов Д. В., Меледин В. Г. Оптоэлектронный метод бесконтактного измерения профиля поверхности крупногабаритных объектов сложной формы // Измерительная техника. 2016. № 1. С. 17–22 [Dvoinishnikov S. V., Anikin Y. A., Kabardin I. K., Kulikov D. V., Meledin V. G., Measurement Techniques, 2016, vol. 59(1), pp. 21–27. https://doi.org/10.1007/S11018-016-0910-8].

8. Двойнишников С. В., Меледин В. Г., Главный В. Г., Наумов И. В., Чубов А. С. Оценка оптимальной частоты пространственной модуляции излучения 3D-измерений // Измерительная техника. 2015. № 5. С. 24–27 [Dvoinishnikov S. V., Meledin V. G., Glavnyi V. G., Naumov I. V., Chubov A. S., Measurement Techniques, 2015, vol. 58(5), pp. 506–511. https://doi.org/10.1007/S11018-015-0745-8].

9. Dvoynishnikov S. V., Rakhmanov V. V., Kabardin I. K., Meledin V. G., Measurement, 2019, vol. 145, pp. 63–70. https://doi.org/10.1016/j.measurement.2019.05.054

10. Lv S., Jiang M., Su C., Zhang L., Zhang F., Sui Q., Jia L., Sensors, 2021, vol. 21, 4463. https://doi.org/10.3390/s21134463

11. Wankhede P., Kodey S., Kurra S, Radhika S., Measurement, 2022, vol. 187, 110273. https://doi.org/10.1016/j.measurement.2021.110273

12. Rudyk A., Semenov A., Kryvinska N., Semenova O., Measurement, 2022, vol. 187, 110271. http://doi.org/10.1016/j.measurement.2021.110271

13. Jiang Y., Wang S., Qin H., Li B., Li Q., Measurement, 2021, vol. 186, 110207. https://doi.org/10.1088/1361-6501%2Fac1b41

14. Dong Y., Li Z., Zhu L., Zhang X., Measurement, 2021, vol. 186, 110199. https://doi.org/10.1016/j.measurement.2021.110199

15. Guo F., Yang B., Zheng W., Liu S., Measurement, 2021, vol. 186, 110165. https://doi.org/10.1016/j.measurement.2021.110165

16. Fan J., F eng Y., Mo J., Wang S., Liang Q., Measurement, 2021, vol. 185, 110029. http://doi.org/10.1016/j.measurement.2021.110029

17. Wang H., Ma J., Yang H., Sun F., Wei Y., Wang L., Measurement, 2021, vol. 185, 110003. https://doi.org/10.1016/j.measurement.2021.110003

18. Shi B., Ma Z., Ni X., Liu J., Liu H., Measurement, 2021, vol. 185, 109938. https://doi.org/10.1016/j.measurement.2021.109938

19. Zhang Y., Fan N., Wu Y., Wu G., Luo H., Yan J., Yang S., Liu F., Measurement, 2021, vol. 171, 108762. https://doi.org/10.1016/j.measurement.2020.108762

20. Luhmann T., ISPRS J. Photogramm. Remote Sens, 2010, vol. 65(6), pp. 558–569. https://doi.org/10.1016/J.ISPRSJPRS.2010.06.003

21. Li B., An Y., Capelleri D., Xu J., Zhang S., Int. J. Intell. Robot. Appl, 2017, vol. 1 (1), pp. 86–103. https://doi.org/10.1007/s41315-016-0001-7

22. Matthias S., Kästner M., Reithmeier E., Measurement, 2015, vol. 73, pp. 239–246. https://doi.org/10.1016/J.MEASUREMENT.2015.05.024

23. Chu C., Yang H., Wang L., Measurement, 2019, vol. 145, pp. 410–418. https://doi.org/10.1016/J.MEASUREMENT.2019.02.058

24. Koutecký T., Paloušek D., Brandejs J., Measurement, 2016, vol. 94, pp. 60–70. https://doi.org/10.1016/J.MEASUREMENT.2016.07.067

25. Cao X., Xie W., Ahmed S. M., Li C. R., Measurement, 2020, vol. 159, 107771. https://doi.org/10.1016/j.measurement.2020.107771

26. Пат. № 2433372 РФ / Двойнишников С. В., Меледин В. Г. // Изобретения. Полезные модели. 2011. № 31 [Dvojnishnikov S. V., Meledin V. G., RF Patent no. 2433372, Byull. Izobret., no. 31 (2011)].

27. Пат. № 2439489 РФ / Двойнишников С. В., Меледин В. Г. // Изобретения. Полезные модели. 2012. № 1 [Dvojnishnikov S. V., Meledin V. G., RF Patent no. 2439489, Byull. Izobret., no. 1 (2012)].


Review

For citations:


Dvoynishnikov S.V., Meledin Y.G., Kabardin I.K., Rakhmanov V.V., Zuev V.O. Phase triangulation method with statistical filtering for measurements under conditions of random additive noise and a limited dynamic range of a photodetector. Izmeritel`naya Tekhnika. 2022;(6):36-40. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-36-40

Views: 224


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)