

The current state of the reference base of the Russian Federation in the field of length and angle measurements
https://doi.org/10.32446/0368-1025it.2022-7-18-23
Abstract
The current state of the reference base of the Russian Federation in the field of length and angle measurements is presented. The description and main metrological characteristics of the State Primary Standards of the unit of length – meter GET 2-2021 and the unit of plane angle GET 22-2014 are given. The possibilities of D. I. Mendeleyev Institute for Metrology for carrying out calibration, testing for type approval, verification and certification of modern high-precision measuring equipment of length and plane angle, which are based on stabilized laser radiation sources, are described. To this date, the State Primary Standard of the unit of length – meter GET 2-2021 provides transferring of the unit of length to laser radiation sources in the wavelength range from 500 to 1050 nm by the optical frequency comb with hydrogen frequency standard, and laser measuring systems in the range from 1·10–9 to 30 m by the complex of laser interference comparators. The State Primary Standard of the unit of plane angle GET 22-2014 provides transferring of plane angle to such systems in the range from 0 to 360° using a rotary table and digital autocollimators. The necessity of traceability of laser radiation sources and laser measuring systems to State primary standards is substantiated. Further prospects for the development of the reference base in the field of length and angle measurements are considered.
About the Authors
Y. G. ZackharenkoRussian Federation
Yuri G. Zackharenko
St. Petersburg
N. A. Kononova
Russian Federation
Natalia A. Kononova
St. Petersburg
M. A. Kosmina
Russian Federation
Marina A. Kosmina
St. Petersburg
Z. V. Fomkina
Russian Federation
Zoya V. Fomkina
St. Petersburg
K. V. Chekirda
Russian Federation
Konstantin V. Chekirda
St. Petersburg
References
1. Recommended values of standard frequencies for applications including the practical realization of the metre and secondary representations of the second. 2016, available at: https:// www.bipm.org/en/publications/mises-en-pratique/standardfrequencies (accesed: 05.04.2022).
2. Alexandrov V. S., Zakharenko Yu. G., Kononova N. A., Leibengardt G. I., Fedorin V. L., Chekirda K. V., Measurement Techniques, 2012, vol. 55, pp. 595–602. https://doi.org/10.1007/s11018-012-0007-y
3. Kononova N. A., Zackharenko Yu. G., Fedorin V. L., Fomkina Z. V., 2018 International Conference Laser Optics (ICLO, p. 371. https://doi.org/10.1109/LO.2018.8435561
4. Zakharenko Yu. G., Kononova N. A., Fedorin V. L., Fomkina Z. V., Chekirda. K. V., Measurement Techniques, 2020, vol. 63, pp. 77–80. https://doi.org/10.1007/s11018-020-01753-9
5. Akimova T. P., Zackharenko Yu. G., Kononova N. A., Fedorin V. L., Fomkina Z. V., Chekirda K. V., Measurement Techniques, 2022, vol. 64, pp. 789–793. https://doi.org/10.1007/s11018-022-02005-8
6. Denisov V. I., Ignatovich S. M., Kvashnin N. L., Skvortsov M. N., Quantum Electronics, 2016, vol. 46, no. 5, pp. 464– 467. https://doi.org/10.1070/QEL16015
7. Skvortsov M. N., Okhapkin M. N., Nevskii A. Yu., Bagayev S. N., Quantum Electronics, 2004, vol. 34, no. 12, pp. 1101– 1106. https://doi.org/10.1070/QE2004v034n12ABEH002851
8. Jungner P., Eickhoff M. D., Swartz St. D., Ye Jun, Hall J. L., Waltman St. B., Proc. SPIE, 1995, vol. 2378, pp. 22–34. https://doi.org/10.1117/12.208229
9. Holzwarth R., Nevsky A. Yu., Zimmermann M., Udem Th., Hansch T. W., Von Zanthier J., Walther H., Knight J. C., Wadsworth W. J., Russell P. St. J., Skvortsov M. N., Bagayev S. N., Applied Physics B, 2001, vol. 73, pp. 269–271. https://doi.org/10.1007/s003400100633
10. Ignatovich S. M., Kvashnin N. L., Skvortsov M. N., Quantum Electronics, 2018, vol. 48, no. 10, pp. 973–976. https://doi.org/10.1070/QEL16609
11. Hall J. L., Defi nition and measurement of optical frequencies: perspectives of optical clocks – and more, Physics-Uspekhi, 2006, vol. 176, no. 12. pp. 1353–1367. (In Russ.) https://doi.org/10.3367/UFNr.0176.200612i.1353
12. Hensh T. V., Passion for accuracy, Physics-Uspekhi, 2006, vol. 176, no. 12. pp. 1368–1380. (In Russ.) https://doi.org/10.3367/UFNr.0176.200612j.1368
13. Ye J., Schnatz H., Hollberg L. W., Journal of Selected Topics in Quantum Electronics, 2003, vol. 9, no. 4, pp. 1041–1058. https://doi.org/10.1109/JSTQE.2003.819109
14. Chekirda K. V., Kosmina M. A., Leibengardt G. I., Shur V. L., Lukin A. Ya., Improvement of the state primary standard of the unit plane angle, Measurements and tests in shipbuilding and related industries. SUDOMETRICA-2014, Abstracts of reports, 2014, pp. 157–159. (In Russ.)
15. Chekirda K. V, Shur V. L., Kosmina M. A. Investigations of the state primary standard of the unit plane angle, Metrology of time and space. Materials of the VIII International Symposium, 2016, pp. 182–184. (In Russ.)
16. Zakharenko Yu. G., Kononova N. A., Fomkina Z. V., Chekirda K. V., Lukin A. Ya., The development of application software of the new equipment for realization and transmission of the length unit, Pribory, 2018, no. 12 (222), pp. 42–47. (In Russ.)
Review
For citations:
Zackharenko Y.G., Kononova N.A., Kosmina M.A., Fomkina Z.V., Chekirda K.V. The current state of the reference base of the Russian Federation in the field of length and angle measurements. Izmeritel`naya Tekhnika. 2022;(7):18-23. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-7-18-23