

Sampling by variables for Rayleigh distributed lots
https://doi.org/10.32446/0368-1025it.2022-6-28-35
Abstract
The application of measurement information processing methods as part of modern quality management of machinebuilding products is considered. Тhe task of constructing the procedures of measurement (variable) inspection for Rayleigh distributed quality characteristic is set and solved. The mechanism of generation of Rayleigh distribution is explained for the parts of the specifi c type. The measurement sampling plan for the single-parameter distribution model is constructed and compared with the attributes plan according to the standard ISO 2859-1 “Statistical methods. Sampling procedures for inspection by attributes. Part 1: Sampling schemes indexed by acceptance quality limit for lot-by-lot inspection”. The test statistics for the two-parameters model are described. The results obtained can be useful for drawing up sampling control plans on the quantitative basis of batches of parts whose geometric parameters have a Rayleigh distribution, which is due to the design features and manufacturing technology of these parts.
Keywords
About the Authors
S. N. GrigorievRussian Federation
Sergey N. Grigoriev
Moscow
P. N. Emelianov
Russian Federation
Petr N. Emelianov
Moscow
D. A. Masterenko
Russian Federation
Dmitry A. Masterenko
Moscow
S. E. Ped
Russian Federation
Sergey E. Ped
Moscow
References
1. Grigoriev S. N., Masterenko D. A., Teleshevskii V. I., Emelyanov P. N., Measurement Techniques, 2013, vol. 55, no. 11, рр. 1311–1315. https://doi.org/10.1007/s11018-013-0126-0
2. Teleshevsky V. I., Measuring informatics in mechanical engineering, Vestnik of MSTU “STANKIN”, 2008, no. 1. pp. 33–38. (In Russ.)
3. Grigoriev S. N., Migranov M. S., Shekhtman S. R., Migranov A. M., Ershov A. A., Pivkin P. M., SPIE Future Sensing Technologies, 2021, pp. 119–141. https://doi.org/10.1117/12.2605753
4. Grigoriev S. N., Teleshevskii V. I., Measurement Techniques, 2011, vol. 54, no. 7, pp. 744–749. https://doi.org/10.1007/s11018-011-9798-5
5. Grigoriev S. N., Sinopalnikov V. A., Tereshin M. V., Gurin V. D., Measurement Techniques, 2012, vol. 55, no. 5, pp. 555–558. https://doi.org/10.1007/s11018-012-9999-6
6. Grigoriev S. N., Gurin V. D., Volosova M. A., Cherkasova N. Y., Materwiss. Werksttech., 2013, no. 44, pp. 790–796. https://doi.org/10.1002/mawe.201300068
7. Grigoriev S. N., Martinov G. M., Proc. CIRP, 2014, no. 14, pp. 517–522. https://doi.org/10.1016/j.procir.2014.03.051
8. Grigoriev S.N., Martinov G. M., Proc. CIRP, 2016, vol. 41, pp. 858–863. https://doi.org/10.1016/j.procir.2015.08.031
9. Grigoriev S. N., Kozochkin M. P., Sabirov F. S., Kutin A. A., Proc. CIRP, 2012, vol. 1, pp. 599–604. https://doi.org/10.1016/j.procir.2012.05.006
10. Leun V. I., Nikolaeva E. V., Tignibidin A. V., The trend in the development of theory and practice of creating control devices to improve the accuracy and productivity of grinding operations of parts and tools in technological processes of mechanical engineering, instrumentation and tool production, Dynamics of Systems, Mechanisms and Machines, 2012, no. 2, pp. 251–254. (In Russ.)
11. Deming W. E., Out of the Crisis, MIT Press, Reprint edition (August 11, 2000), 524 p.
12. Adler Yu. P., Shper V. L., Prakticheskoe rukovodstvo po statisticheskomu upravleniyu processami [Practical guide to statistical process management], Moscow, Alpina Publisher, 2019, 320 p. (In Russ.)
13. Wheeler D. J., Chambers D. S., Understanding Statistical Process Control, Addison-Wesley, 1990, 310 p.
14. Lapidus V. A., Sistema Shuharta [Shewhart’s System], N. Novgorod, Priority Publ., 2004. 65 p. (In Russ.)
15. Rozno M. I., Statisticheskij kontrol’ kachestva produkcii po al’ternativnomu priznaku pri izmenyonnom dopuske (metod AKUD) [Statistical quality control of products on an alternative basis with a modifi ed tolerance (AKUD method)], Reliability and quality control, 1992, no. 2, pp. 44–52. (In Russ.)
16. Rozno M. I., Regulation of processes based on data on an alternative feature by a narrowed tolerance, Methods of quality management, 2001, no. 12, pp. 27–33. (In Russ.)
17. Grigorovich V. G., Kozlova N. O., Yudin S. V., Metod ocenki centra gruppirovaniya razmerov v usloviyah proizvodstva na ARL [Method of estimating the size grouping center in production conditions at ARL], Avtomatizaciya tekhnologicheskih processov v mashinostroenii, Volgograd State Technical University, 1995, pp. 197–202. (In Russ.)
18. Grigorovich V. G., Kozlova N. O., Yudin S. V., Informacionnostatisticheskie metody regulirovaniya tekhnologicheskih processov [Information and statistical methods of regulation of technological processes], Forging and stamping production, 2000, no. 9, pp. 27–29. (In Russ.)
19. Steiner S. H., Geyer P. L., Wesolowsky G. O., International Journal of Production Research, 1994, vol. 32, no. 1, pp. 75–91. https://doi.org/10.1080/00207549408956917
20. Steiner S. H., Geyer P. L., Wesolowsky G. O., Quality and Reliability Engineering International, 1996, vol. 12, no. 5, pp. 345–353. https://doi.org/10.1002/(SICI)1099-1638(199609)12:5<345::AIDQRE11> 3.0.CO;2-M
21. Masterenko D. A., Metel A. S., Mechanics & Industry, 2017, vol. 18, no. 7, 702. https://doi.org/10.1051/meca/2017054
22. Orlov A. I., Prikladnaya statistika [Applied statistics], Moscow, Exam, Publ., 2004. 483 p. (In Russ.)
23. Raza S. M., Butt M. M., Siddiqi A. F., Shewhart Control Charts for Rayleigh Distribution in the Presence of Type I Censored Data, Journal of ISOSS, 2016, vol. 2 (2), pp. 210–217.
24. Rozanov Yu. A., Teoriya veroyatnostej,sluchajnye processy i matematicheskaya statistika [Probability theory, random processes and mathematical statistics], Moscow, Nauka Publ., 1985. 320 p. (In Russ.)
Review
For citations:
Grigoriev S.N., Emelianov P.N., Masterenko D.A., Ped S.E. Sampling by variables for Rayleigh distributed lots. Izmeritel`naya Tekhnika. 2022;(6):28-35. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-28-35