

Evaluation of the eff ectiveness of the application of the information and measurement system for monitoring the temperature and humidity of grain products
https://doi.org/10.32446/0368-1025it.2023-4-23-30
Abstract
The current issues of complex automation of various grain processing and storage facilities are considered. The system of automated control of technological processes of grain storage and processing at the corresponding enterprises is proposed. The use of the system allows you to control the storage and processing of grain and grain products in accordance with the technological regulations, as well as the activities of technical personnel, reduce fi nancial and energy costs of enterprises. Indirect non-destructive methods of control of parameters (humidity and temperature) of grain products are analyzed. The construction of a functional circuit of measuring transducers and the further development of electronic devices of information and measurement systems based on them are discussed. It is shown that the use of such information-measuring systems makes it possible to tighten the control of technological processes and thereby increase the degree of control of technical devices of moisture and thermometry.
About the Authors
P. I. KalandarovUzbekistan
Palvan I. Kalandarov
Tashkent
G. I. Ikramov
Uzbekistan
Gani I. Ikramov
Tashkent
References
1. Kalandarov P. I., Logunova O. S., Andreev S. M. Scientifi c foundations of moisture measurement. Monograph, Tashkent, 2021, 174 p. (In Russ.)
2. Zimin E. M., Volkhonov M. S., Zimin I. B. Results of laboratory studies of the work of an aerobic grain oxidizer. Proceedings of the International Conference “Actual problems of agricultural engineering support”, Yaroslavl, 2004, vol. 3, pp. 58–62. (In Russ.)
3. Savosin S. I., Soldatov V. V. Avtomatizaciya kontrolya vlazhnosti zerna i vozduha pri ego hranenii. Vestnik FGOU VPO “MAGU im. V. P. Goryachkina”. Agroinzheneriya, 2008, no. 3(28), pp. 28–30. (In Russ.)
4. Berliner M. A. Izmereniya vlazhnosti [Measurements of humidity]. Moscow, Energia Publ., 1973, 400 p. (In Russ.)
5. Teoriya i praktika ekspressnogo kontrolya vlazhnosti tvyordyh i zhidkih materialov [Theory and practice of express humidity control of solid and liquid materials]. Ed. Krichevskyi E. S., Moscow, Energia Publ., 1980, 240 p. (In Russ.)
6. Kovaleva A. A., Saitov R. I., Zaporozhets A. S. et al. Measurement Techniques. 2017, vol. 60, no. 4, pp. 305–308. https://doi.org/10.1007/s11018-017-1191-6
7. Kalandarov P., Mukimov Z., Tursunov O., Kodirov D., Erkinov B. Study on dielcometric moisture control method based on capacitive transducers. AIP Conference Proceedings, 2022, vol. 2686, 020016. https://doi.org/10.1063/5.0114591
8. Kalandarov P. I., Abdullaeva D. A. IOP Conference Series: Earth and Environmental Science, 2022, vol. 1043(1), 012012. https://doi.org/10.1088/1755-1315/1043/1/012012
9. Kalandarov P. I., Abdullayev K. K. IOP Conference Series: Earth and Environmental Science, 2022, vol. 1043(1), 012011. https://doi.org/10.1088/1755-1315/1043/1/012011
10. Kalandarov P. I., Mukimov Z. M. Humidity Control During Hydrothermal Treatment of Grain and Their Processed Products. In: Radionov A. A., Gasiyarov V. R. (eds) Proceedings of the 8th International Conference on Industrial Engineering. ICIE 2022. Springer, Cham., pp. 966–981. https://doi.org/10.1007/978-3-031-14125-6_94
11. Saitov R. I. SVCh-vlagometriya sel’skohozyajstvennyh produktov [Microwave moisture measurement of agricultural products], Ufa, Gilem Publ., 2009, 158 p. (In Russ.)
12. Krichevsky E. S., Volchenko A. G., Galushkin S. S. Kontrol’ vlazhnosti tvyordyh i sypuchih materialov [Moisture control of solid and bulk materials], ed. E. S. Krichevsky, Moscow, Energoatomizdat Publ., 1987, 136 p. (In Russ.)
13. Klokov Yu. V. Teoriya udaleniya vlagi. O nagreve pishchevyh produktov v EMP SVCh “ob”yomno”. Hranenie i pererabotka sel’hozsyr’ya [Storage and processing of agricultural raw materials], 2003, no. 7, pp. 29–31. (In Russ.)
14. Borodin I. F. Primenenie SVCh-energii v sel’skom hozyajstve [Application of microwave energy in agriculture]. Moscow, Knizhny mir Publ., 2012, 56 p. (In Russ.)
15. Fedyunin P. A. et al. Mikrovolnovaya termovlagometriya [Microwave thermovlagometry], Moscow, Mashinostroenie-1 Publ., 2004, 208 p. (In Russ.)
16. Blagoveshchenskaya M. M., Karelina E. B., Klekho D. Yu. Razrabotka programmno-apparatnogo kompleksa dlya kontrolya kachestvennyh pokazatelej muki v potoke. Collection of scientifi c reports of the II International scientifi c and practical conference “Avtomatizaciya i upravlenie tekhnologicheskimi i biznes processami v pishchevoj promyshlennosti”, Moscow, 2016, pp. 140–145. (In Russ.)
17. Japaridze T. D., Shalamberidze E. D., Meskhidze R. N. et al. Yomkostnye datchiki i laboratornye vlagomery zerna i zernoproduktov [Capacitive sensors and laboratory moisture meters of grain and grain products]. Moscow, CNIITEI VNPO Zernoprodukt Publ., Ser. Elevatornaya promyshlennost’, 1990, 36 p. (In Russ.)
18. Grachev A. V., Churakov P. P. Converter of parameters of contactless capacitive sensors for conductodielmetric measurements. Proceedings of the Samara Scientifi c Center of the Russian Academy of Sciences, 2016, vol. 18, no. 4(7), pp. 1363– 1366. (In Russ.)
19. Chetverikov E. A., Moiseev A. P., Kargin V. A. Improvement of the milk thistle drying unit due to automation of the humidity measurement process. Agrarian Scientifi c Journal, 2015, no. 7, pp. 52–55. (In Russ.)
20. Khairetdinova A. F., Saitov R. I., Abdeev R. G. Measurement Techniques, 2011, vol. 53, no. 3, рp. 356–360. https://doi.org/10.1007/s11018-011-9732-x
21. Aguilar-Castro K. M., Flores-Prieto J. J., Macías-Melo E. V. J. Mech. Sci. Technol. 2014, no. 28, рр. 293–300. https://doi.org/10.1007/с12206-013-0964-3
22. Lisovsky V. V., Titovitsky I. A. Mikrovolnovoj kontrol’ v tekhnologicheskih processah APK [Microwave control in agro-industrial complex technological processes]. Minsk, BGATU Publ., 2013. 232 p. (In Russ.)
23. Gulyaev G. A. Avtomatizaciya posleuborochnoj obrabotki i hraneniya zerna [Automation of post-harvest processing and grain storage]. Moscow, Agropromizdat Publ., 2003, 324 p. (In Russ.)
24. Kalandarov P. I. Measurement Techniques, 2022, vol. 65, no. 4, pp. 297–303. https://doi.org/10.1007/s11018-022-02082-9
25. Petrov G. P. Modern Russian equipment for determining the moisture content of agricultural products. Bread products, 2018, no. 12, pp. 22–25. (In Russ.)
26. Aichholzer A., Schuberth C., Mayer H. et al. Eur. J. Wood Prod. 2018, vol. 76, рр. 89–103. https://doi.org/10.1007/s00107-017-1203-x
27. Iskandarov B. P., Kalandarov P. I. Measurement Techniques, 2013, vol. 56, no. 7, рp. 827–830. https://doi.org/10.1007/s11018-013-0290-2
28. Narkevich Yu. M., Logunova O. S., Kalandarov P. I. et al. IOP Conference Series: Earth and Environmental Science, 2021, vol. 939(1), 012031. https://doi.org/10.1088/1755-1315/939/1/012031
29. Kalandarov P. I. Measurement Techniques, 2021, vol. 64, no. 6, pp. 522–528. https://doi.org/10.1007/s11018-021-01963-9
30. Narkevich Yu. M., Logunova O. S., Kalandarov P. I. et al. IOP Conference Series: Earth and Environmental Science, 2021, vol. 939(1), 012030. https://doi:10.1088/1755-1315/939/1/012030
31. Kalandarov P. I., Mukimov Z. M., Nigmatov A. M. Automatic Devices for Continuous Moisture Analysis of Industrial Automation Systems. In: Radionov A. A., Gasiyarov V. R. (eds) Proceedings of the 7th International Conference on Industrial Engineering. ICIE 2021. Springer, Cham., рр. 810–817. https://doi.org/10.1007/978-3-030-85230-6_96
32. Parsokhonov A., Kalandarov P., Olimov O., Akhmedov A. IOP Conference Series: Earth and Environmental, 2022, vol. 1076(1), 012010. https://doi.org/10.1088/1755-1315/1076/1/012010
33. Nikolaev A., Logunova O., Garbar E., Arkulis M., Kalandarov P. ACM International Conference Proceeding Series, 2021, рp. 23–27. https://doi.org/10.1145/3502814.3502818
34. Marynowicz A., Kucharczyk A. Measurements, 2021, vol. 185, 110054. https://doi.org/10.1016/j.measurement.2021.110054
35. Susha Lekshmi S. U., D. N. Singh, Maryam Shojaei Baghini. Measurement, 2014, no. 54, рр. 92–105. https://doi.org/10.1016/j.measurement.2014.04.007
36. Moron C., Garcia-Fuentevilla L., Garcia A., Moron A. Sensors. 2016, vol. 16, no. 5, 697. https://doi.org/10.3390/s16050697
37. Larsen P. K. Journal of Architectural Conservation, 2012, vol. 18, no. 1, рр. 47–62. https://doi.org/10.1080/13556207.2012.10785103
38. Dahlen J., Schimleck L., Schilling E. Forests, 2020, vol. 11, no. 4, 479. https://doi.org/10.3390/f11040479
39. Ikramov G. I., Kalandarov P. I. Izmeritel’naya Tekhnika, 2022, no. 9, pp. 71–76. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-9-71-76
40. Kalandarov P. I., Ikramov G. I. Automation of the process of monitoring the humidity, temperature of grain and air in the warehouses of melkombinates. Electronic periodical scientifi c journal SCI-ARTICLE.RU, 2022, no. 108, pp. 50–62, available at: https://sci-article.ru/number/08_2022.pdf (accessed: 28.02.2023). (In Russ.)
41. Kalandarov P. I., Ikramov G. I., Mukimov Z. M. Patent Republic of Uzbekistan UZ FAR 02103 (31.10.2022).
Review
For citations:
Kalandarov P.I., Ikramov G.I. Evaluation of the eff ectiveness of the application of the information and measurement system for monitoring the temperature and humidity of grain products. Izmeritel`naya Tekhnika. 2023;(4):23-30. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-4-23-30