Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Virtual sensors for discrete-time nonlinear systems

https://doi.org/10.32446/0368-1025it.2023-4-18-22

Abstract

The problem of virtual sensor design is described. The problem arises when physical sensors are defi cient for solving the diagnosis problems or replacing the faulty sensor. The use of physical sensors to achieve the necessary results may be expensive; besides such sensors as a rule are of non high reliability. The problem of robust virtual sensors design in technical systems described by nonlinear models containing non-smooth nonlinearities such that backlash, saturation, etc, subjected to the unmatched disturbances is studied and solved. The relations allowing to design virtual sensor of minimal dimension estimating prescribed component of the state vector of the system and insensitive or having minimal sensitivity to the disturbances are obtained. The virtual sensors can be used in addition to existing physical sensors or for replacing the faulty sensor. Theoretical results are illustrated by practical example of well-known tree tank system. Simulation based on the package Matlab confi rms theoretical results. The obtained results can be used to solve the problem of fault tolerant system design.

About the Authors

A. N. Zhirabok
Institute of Marine Technology Problems Far East Branch Russian Academy of Sciences; Far Eastern Federal University
Russian Federation

Alexey N. Zhirabok

Vladivostok



A. V. Zuev
Institute of Marine Technology Problems Far East Branch Russian Academy of Sciences; Far Eastern Federal University
Russian Federation

Alexander V. Zuev

Vladivostok



A. E. Shumsky
Far Eastern Federal University
Russian Federation

Alexey E. Shumsky

Vladivostok



References

1. Zhirabok A. N., Kim Chkhun Ir. J. Computer and Systems Sciences International, 2022, vol. 61, pp. 38–46. https://doi.org/10.1134/S1064230722010130

2. Zhirabok A. N., Zuev A. V., Protsenko A. A., Kim Chung Il. Measurement Techniques, 2022, vol. 65, no. 6, pp. 405–411. https://doi.org/10.1007/s11018-022-02097-2

3. Witczak M. Fault diagnosis and fault tolerant control strategies for nonlinear systems. Berlin, Springer, 2014. https://doi.org/10.1007/978-3-319-03014-2

4. Ahmed Q., Bhatti A., Iqbal M. IEEE Sensors Journal, 2011, vol. 11, no. 9, pp. 1832–1840. https://doi.org/10.1109/JSEN.2011.2105471

5. Heredia G., Ollero A. Sensors, 2010, vol. 10, pp. 2188–2201. httpc://doi.org/10.3390/s100302188

6. Hosseinpoor Z., Arefi M., Razavi-Far R., Mozafari N., Hazbavi S. IEEE Sensors Journal, 2021, vol. 21, no. 4, pp. 5044–5051. https://doi.org/10.1109/JSEN.2020.3033754

7. Jove E., Casteleiro-Roca J., Quntian H., Mendez-Perez J., Calvo-Rolle J. Informatica, 2019, vol. 30, no. 4, pp. 671–687. https://doi.org/10.15388/Informatica.2019.224

8. Blanke M., Kinnaert M., Lunze J., Staroswiecki M. Diagnosis and Fault-Tolerant Control. Berlin, Springer-Verlag, 2006. https://doi.org/10.1007/978-3-540-35653-0

9. Zhirabok A., Shumsky A. Algebraicheskie metody analiza nelinejnyh dinamicheskih sistem. Vladivostok, Dalnauka Publ., 2008, 231 р. (In Russ.)

10. Gratzer G. General lattice theory, Berlin, Akademie, 1978, 663 р.

11. Belikov J., Kaldmae A., Kaparin V., Kotta U., Shumsky A., Tonso M., Zhirabok A. Proceedings of the Estonian Academy of Sciences, 2017, vol. 66, no. 1, pp. 89–107. https://doi.org/10.3176/proc.2017.1.06

12. Kaldmae A., Kotta U., Jiang B., Shumsky A., Zhirabok A. Asian J. Control. 2016, vol. 8, no. 3, рр. 858–867. https://doi.org/10.1002/asjc.1185

13. Misawa E., Hedrick J., J. Dynamic Systems, Measurement and Control, 1989, vol. 111, рр. 344–352. https://doi.org/10.1115/1.3153059


Review

For citations:


Zhirabok A.N., Zuev A.V., Shumsky A.E. Virtual sensors for discrete-time nonlinear systems. Izmeritel`naya Tekhnika. 2023;(4):18-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-4-18-22

Views: 206


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)