

Methods of robust virtual sensor design
https://doi.org/10.32446/0368-1025it.2022-6-17-22
Abstract
The problem of technical system efficiency increasing by application of virtual sensors is considered. The problem arises when physical sensors are deficient for reducing diagnostic system complexity or solving fault isolation problem. The use of physical sensors to achieve the necessary results may be expensive; besides such sensors as a rule are of non high reliability. The problem of robust virtual sensors design in technical systems described by nonlinear models subjected to the unmatched disturbances is studied. To design such sensors, two different canonical forms are used: identification and Jordan canonical forms. The relations allowing to design virtual sensor of minimal dimension estimating prescribed component of the state vector of the system and insensitive or having minimal sensitivity to the disturbances are obtained. Minimal sensitivity is achieved by using singular value decomposition of the matrices describing the disturbances and the original system. The virtual sensors can be used in addition to existing physical sensors or for replacing the faulty sensor. Theoretical results are illustrated by practical example. The obtained results can be used to solve the problem of fault tolerant system design.
About the Authors
A N. ZhirabokRussian Federation
Alexey N. Zhirabok
Vladivostok
A. V. Zuev
Russian Federation
Alexander V. Zuev
Vladivostok
A. A. Protcenko
Russian Federation
Alexander A. Protcenko
Vladivostok
K. C. Ir
Russian Federation
Kim Chung Ir
Vladivostok
References
1. Blanke M., Kinnaert M., Lunze J., Staroswiecki M., Diagnosis and Fault-Tolerant Control, Berlin , Springer-Verlag, 2006. https://doi.org/10.1007/978-3-540-35653-0
2. Witczak M., Fault diagnosis and fault tolerant control strategies for nonlinear sy stems, Berlin, Springer, 2014. https://doi.org/10.1007/978-3-319-03014-2
3. Ahmed Q., Bhatti A., Iqbal M., IEEE Sensors Journal, 2011, vol. 11, no. 9, pp. 1832–1840. https://doi.org/10.1109/JSEN.2011.2105471
4. Heredia G., Ollero A., Sensors, 2010, vol. 10, pp. 2188–2201. https://doi.org/10.3390/s100302188
5. Hosseinpoor Z., Arefi M., Razavi-Far R., Mozafari N., Hazbavi S., Virtual sensors for fault diagnosis: a case of induction motor broken rotor bar, IEEE Sensors Journal, 2021, vol. 21, no. 4, pp. 5044–5051.
6. Wang Y., Rotondo D., Puig V., Cembrano G., IEEE Trans. on Circuits and Systems, 2020, vol. 67, no. 12, pp. 5316–5325. https://doi.org/10.1109/TCSI.2020.3015887
7. Zhirabok A., Kim Chung Ir, J. Computer and Systems Sciences Int., 2022, vol. 61, pp. 38–46. https://doi.org/10.1134/S1064230722010130
8. Zhirabok A., Zuev A.,Sergiyenko O., Shumsky A., Automation and Remote Control, 2022, vol. 83, pp. 214–236. https://doi.org/10.1134/S0005117922020059
9. Zhirabok A. N., Zuev A. V., Shumskii A. E., Measurement Techniques, 2020, vol. 62, no. 10, pp. 869–878. https://doi.org/10.1007/s11018-020-01707-1
10. Low X., Willsky A., Verghese G., Automatica, 1986, vol. 22, рр. 333–344. https://doi.org/10.1016/0005-1098(86)90031-2
11. Misawa E., Hedrick J., J. Dynamic Systems, Measurement, and Control, 1989, vol. 111, рр. 344–352. https://doi.org/10.1115/1.3153059
Review
For citations:
Zhirabok A.N., Zuev A.V., Protcenko A.A., Ir K.C. Methods of robust virtual sensor design. Izmeritel`naya Tekhnika. 2022;(6):17-22. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-6-17-22