Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Nuclear-magnetic flowmeter-relaxometer for control to expenditure and condition transparent liquids of coolant in first circuit of nuclear reactor a moving object

https://doi.org/10.32446/0368-1025it.2022-4-49-58

Abstract

The necessity of increasing the accuracy of measuring the flow rate of the coolant in the first loop of a nuclear reactor for mobile objects has been substantiated. The necessity of monitoring the state of the coolant in the current flow in the pipeline is additionally substantiated. At the moment, in nuclear power plants of mobile objects, the control of the state of the coolant in real time is not implemented. Problems arising when controlling the flow rate of the coolant by various models of flow meters in the primary circuit of a nuclear reactor are considered. It was found that the use of nuclear magnetic flow meters allows them to be solved. A new design of a tagged-type nuclear magnetic flowmeter-relaxometer has been developed using modulation techniques and modulation of the magnetic field in the area of the nutation coil to register the nuclear magnetic resonance signal. Methods for measuring the times of longitudinal and transverse relaxation of the current coolant are proposed. The paper presents the results of studying the parameters (flow rate and relaxation times) of the model solution flowing in the pipeline, which contains the chemical elements that make up the coolant for nuclear reactors of mobile objects. It was found that the measurement error for these parameters does not exceed 1 %. The prospects of using the developed design of a nuclear-magnetic flowmeter-relaxometer in the first circuit of a nuclear reactor of a mobile object are shown.

About the Authors

V. V. Davydov
Peter the Great Saint Petersburg Polytechnic University; All Russian Research Institute of Phytopathology
Russian Federation

Vadim V. Davydov

St. Petersburg;

Bolshye Vyazyomy, Moscow region



N. S. Myazin
Peter the Great Saint Petersburg Polytechnic University; The Bonch-Bruevich St. Petersburg State University of Telecommunication
Russian Federation

Nikita S. Myazin

St. Petersburg



R. V. Davydov
Peter the Great Saint Petersburg Polytechnic University
Russian Federation

Roman V. Davydov

St. Petersburg



References

1. Sergeev V., Anikina I., Kalmykov K., Energies, 2021, vol. 14, 2685. https://doi.org/10.3390/en14092685

2. Davydov V. V., Myazin N. S., Kiryukhin A. V., Atomic Energy, 2020, vol. 127, no. 5, pp. 274–279. https://doi.org/10.1007/s10512-020-00623-5

3. Dong Z., Liu M., Jiang D., Huang X., Zhang Y., Zhang Z., Energies, 2018, vol. 11, 2782. https://doi.org/10.3390/en11102782

4. Gulevich A. V., Dekusar V. M., Chebeskov A. N., Kuchinov V. P., Voloshin N. P., Atomic Energy, 2020, vol. 127, no. 3, pp. 192–195. https://doi.org/10.1007/s10512-020-00609-3

5. Elistratov V. V., Diuldin M. V., Denisov R. S., IOP Conference Series: Earth and Environmental Science, 2018, vol. 180, no. 1, 012006. https://doi.org/10.1088/1755-1315/180/1/012006

6. Sachenko A. V., Kostylyov V. P., Bobyl A. V., Shvarts M. Z., Evstigneev M. A., Technical Physics Letters, 2018, vol. 44, no. 10, pp. 873–876. https://doi.org/10.1134/S1063785018100139

7. Abramov L. V., Baklanov A. V., Bakmetiev A. M., Kiselev V. V., Atomic Energy, 2020, vol. 129, no. 2, pp. 103–108. https://doi.org/10.1007/s10512-020-00611-2

8. Davydov V. V., Dudkin V. I., Velichko E. N., Karseev A. Yu., Journal of Optical Technology, 2015, vol. 82, no. 3, pp. 132–135. https://doi.org/10.1364/JOT.82.000132

9. Lee K.-H., Kim M.-G., Lee J.I., Lee P.-S., Energies, 2015, vol. 8, 11470. https://doi.org/10.3390/en81011470

10. Semenikhin A. V., Saunin Y. V., Ryasnyi S. I., Atomic Energy, 2018, vol. 124, no. 1, pp. 8–13. https://doi.org/10.1007/s10512-018-0367-8

11. Dayev Zh. A., Latyshev L. N., Flow Measurement and Instrumentation, 2017, vol. 56, pp. 18–22. https://doi.org/10.1016/j.flowmeasinst.2017.07.001

12. Dong Z., Li B., Li J., Zhang Y., Zhang Z., Energy, 2021, vol. 221, 119906. https://doi.org/10.1016/j.energy.2021.119906

13. Marusina M. Y., Bazarov B. A., Galaidin P. A., Marusin M. P., Silaev A. A., Zakemovskaya E. Y., Mustafaev Y. N., Measurement Techniques, 2014, vol. 57, no. 5, pp. 580–586. https://doi.org/10.1007/s11018-014-0501-5

14. D’yachenko S. V., Zhernovoi A. I., Technical Physics, 2016, vol. 61, no. 12, pp. 1835–1837. https://doi.org/10.1134/S1063784216120112

15. Gizatullin B., Gafurov M., Vakhin A., Rodionov A., Mamin G., Orlinskii S., Mattea C., Stapf S., Energy and Fuels, 2019, vol. 33, no. 11, 10923. https://doi.org/10.1021/acs.energyfuels.9b03049

16. Zargar M., Johns M. L., Aljindan J. M., Noui-Mehidi M. N., O’Neill K. T., SPE Production and Operations, 2021, vol. 36, no. 2, pp. 423–436. https://doi.org/10.2118/205351-PA

17. Deng F., Xiong C., Chen S., Chen G., Wang M., Liu H., Zhang J., Xiao L., Petroleum Exploration and Development, 2020, vol. 47, no. 4, pp. 855–866. https://doi.org/10.1016/S1876-3804(20)60101-X

18. Velt I. D., Mikhailova Yu. V., Measurement Techniques, 2013, vol. 56, no. 3, pp. 283–288. https://doi.org/10.1007/s11018-013-0196-z

19. Neronov Y. I., Seregin N. N., Measurement Techniques, 2013, vol. 55, no. 11, pp. 1287–1293. https://doi.org/10.1007/s11018-013-0123-3

20. O’Neill K. T., Brancato L., Stanwix P. L., Fridjonsson E. O., Johns M. L., Chemical Engineering Science, 2019, vol. 202, pp. 222– 237. https://doi.org/10.1016/j.ces.2019.03.018

21. Fridjonsson E. O., Stanwix P. L., Johns M. L., Journal of Magnetic Resonance, 2014, vol. 245, pp. 110–115. https://doi.org/10.1016/j.jmr.2014.06.004

22. Elkins C. J., Alley M. T., Express Fluids, 2007, vol. 43, pp. 823– 858. https://doi.org/10.1007/s00348-007-0383-2

23. Davydov V. V., Optics and Spectroscopy, 2016. vol. 121, no. 1. pp. 18–24. https://doi.org/10.1134/S0030400X16070092

24. Davydov V. V., Dudkin V. I., Karseev A. Y., Measurement Techniques, 2015, vol. 58, no. 3, pp. 317–322. https://doi.org/10.1007/s11018-015-0707-1

25. Davydov V. V., Dudkin V. I., Karseev A. Yu., Vologdin V. A., Journal of Applied Spectroscopy, 2015, vol. 82, no. 6, pp. 1013– 1019. https://doi.org/10.1007/s10812-016-0220-6

26. Leshe A., Nuclear induction, Veb Deustscher Verlag Der Wissenschaften, Berlin, 1963, 864 p.

27. Abragam A., The principles of nuclear magnetism, Oxford, Clarendon Press, 1961, 599 p.

28. Davydov V. V., Dudkin V. I., Karseev A. Y., Measurement Techniques, 2014, vol. 57, no. 8, pp. 912–918. https://doi.org/10.1007/s11018-014-0559-0


Review

For citations:


Davydov V.V., Myazin N.S., Davydov R.V. Nuclear-magnetic flowmeter-relaxometer for control to expenditure and condition transparent liquids of coolant in first circuit of nuclear reactor a moving object. Izmeritel`naya Tekhnika. 2022;(4):49-58. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-4-49-58

Views: 152


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)