

Comparison of metrological characteristics of diffusion coefficient non-destructive testing methods in thin porous materials
https://doi.org/10.32446/0368-1025it.2022-5-69-75
Abstract
The problem of insufficient efficiency and accuracy of diffusion coefficient non-destructive testing methods in thin porous materials is studied. The productivity of diffusion coefficient studies by traditional methods is low due to the need for long-term calibration of diffusant concentration converters in a porous materials. Two methods that make it possible to determine the desired coefficient in the absence of a real static characteristic for the applied diffusant concentration converter are considered. Method I is rigidly tied to fix the time moment, which corresponds to the maximum diffusant concentration after the application of the pulsed action. When determining the desired coefficient by method II, it is possible to select two identical values of the converter output characteristics after a pulse action with fixing the corresponding time points. The comparison of these methods is carried out. The errors of determining the desired coefficient under comparable conditions are investigated by two methods. The possibility of reducing the resulting error for method II by selecting the values included in the calculated expression is analyzed. The results of the study will be useful in the production and operation of products made from porous materials.
About the Authors
V. P. BelyaevRussian Federation
Vadim P. Belyaev
Tambov
M. P. Belyaev
Russian Federation
Maksim P. Belyaev
Tambov
S. V. Mishchenko
Russian Federation
Sergey V. Mishchenko
Tambov
P. S. Belyaev
Russian Federation
Pavel S. Belyaev
Tambov
References
1. Kablov E. N., Herald of the Russian Academy of Sciences, 2020, vol. 90, no. 2, pp. 225–228. https://doi.org/10.1134/S1019331620020124
2. Garshin A. P., Kulik V. I., Matveev S. A., Nilov A. S., Refractories and Industrial Ceramics, 2017, vol. 58, no. 2, pp. 148– 161. https://doi.org/10.1007/s11148-017-0073-4
3. Gladysheva T. V., Gladyshev N. F., Dvoretskii S. I., Russian Journal of Applied Chemistry, 2016, vol. 89, no. 7, pp. 1206– 1209. https://doi.org/10.1134/S1070427216070223
4. Delgado J. M. P. Q., Ramos N. M. M., de Freitas V. P., Journal of Building Physics, 2012, vol. 35, no. 3, pp. 251–266. https://doi.org/10.1177/1744259111418331
5. Hallaji M., Seppänen A., Pour-Ghaz M., Cement and Concrete Research, 2015, vol. 69, pp. 10–18. https://doi.org/10.1016/j.cemconres.2014.11.007
6. Nizovtsev M. I., Stankus S. V., Sterlyagov A. N., Terekhov V. I., Khairulin R. A., Int. J. Heat Mass Transfer, 2008, vol. 51, no. 17, pp. 4161–4167. https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.013
7. Modern Drying Technology, vol. 2, Experimental Techniques, Ed. Mujumdar A. S., Tsotsas E., Weinheim, Wiley-VCH Verlag GmbH & Co, KGaA, 2009, 374 p.
8. Hibbe F., Caro J., Chmelik C., Huang A., Kirchner T., Ruthven D., Valiullin R., Kä rger J., Journal of the American Chemical Society, 2012, vol. 134, no. 18, pp. 7725–7732. https://doi.org/10.1021/ja211492b
9. Kotereva T. V., Ikonnikov V. B., Gavrishchuk E. M., Potapov A. M., Savin D. V., Technical Physics, 2018, vol. 63, no. 7, pp. 1079–1083. https://doi.org/10.1134/S1063784218070204
10. Selivanova Z. M., Kurenkov D. S., Varepo L. G, Trapeznikova O. V., Journal of Physics: Conference Series, 2021, vol. 1791, 012110. https://doi.org/10.1088/1742-6596/1791/1/012110
11. Platunov E. S., Baranov I. V., Buravoi S. E., Kurepin V. V., Teplofi zicheskie izmereniya [Thermophysical measurements], Ed. Platunov E. S., St. Petersburg, SPbGUNiPT Publ., 2010, 738 p. (In Russ.)
12. Mishchenko S. V., Belyaev P. S., Gladkikh V. A., Safronova E. N., Drying Technology, 1999, vol. 17, no. 10, pp. 2151–2167. https://doi.org/10.1080/07373939908917677
13. Mochalin S. N., Isaeva I. N., Ponomarev S. V., The Choice of Optimal Measuring Conditions of Moisture Transfer in Thin Sheet Capillary Porous Materials by the Technique of “Prompt” Moisture Source, Transaction of the TSTU, 2010, vol. 16, no. 3, pp. 533–545 (In Russ.).
14. Mochalin S. N., Ponomarev S. V., Izmerenie harakteristik vlagoperenosa tonkolistovyh kapilljarno-poristyh materialov metodom “mgnovennogo” istochnika vlagi [Measurement of moisture transfer characteristics of thin-sheet capillary-porous materials by the method of “instantaneous” source of moisture], Moscow, Spektr Publ., 2010, 100 p. (In Russ.)
15. Belyaev V. P., Mishchenko S. V., Belyaev P. S., Measurement Techniques, 2015, vol. 58, no. 5, pp. 574–579. https://doi.org/10.1007/s11018-015-0756-5
16. Belyaev V. P., Mishchenko S. V., Belyaev P. S., Technical Physics, 2019, vol. 64, no. 10, pp. 1544–1547. https://doi.org/10.1134/S1063784219100050
17. Belyaev V. P., Varepo L. G., Belyaev P. S., Belousov O. A., Pudovkin A. P., AIP Conference Proceedings, 2019, vol. 2141, iss. 1, 050017. https://doi.org/10.1063/1.5122160
18. Ponomarev S. V., Mishchenko S. V., Divin A. G., Vertogradskii V. A., Churikov A. A., Teoreticheskie i prakticheskie osnovy teplofi zicheskikh izmerenii [Theoretical and practical foundations of thermophysical measurements], Ed. Ponomarev S. V., Moscow, Fizmatlit Publ., 2008, 408 p. (In Russ.)
19. Belyaev V. P., Belyaev М. P., Mishchenko S. V., Belyaev P. S., Measurement Techniques, 2014, vol. 56, no. 10, pp. 1190–1196. https://doi.org/10.1007/s11018-014-0353-z
20. Shashkov A. G., Volohov G. M., Abramenko T. N., Kozlov V. P., Metody opredelenija teploprovodnosti i temperaturoprovodnosti [Methods for determining thermal conductivity and thermal diff usivity], Moscow, Jenergija Publ., 1973, 336 p. (In Russ.)
Review
For citations:
Belyaev V.P., Belyaev M.P., Mishchenko S.V., Belyaev P.S. Comparison of metrological characteristics of diffusion coefficient non-destructive testing methods in thin porous materials. Izmeritel`naya Tekhnika. 2022;(5):69-75. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-5-69-75