Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Thermodynamic properties of R1233zd(E) refrigerant: a technique for constructing the fundamental equation of state and tabulated data

https://doi.org/10.32446/0368-1025it.2022-5-22-28

Abstract

The substance trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E)) refers to fl uorinated hydrocarbon compounds; it is currently being considered as an alternative, fi rstly, to the refrigerant R245fa, which works in organic Rankine cycles. Secondly, R1233zd(E) works as an alternative to the R134a and R123 refrigerants previously used in chillers. To calculate the equilibrium properties (density, entropy, etc.) of this substance, a unifi ed fundamental equation of state (UFEoS) is proposed that satisfi es a number of requirements, including: a) takes into account the asymmetric nature of the behavior of a real fl uid relative to the critical isochore in accordance with the requirements of modern physics of critical phenomena, b) implements the transition of the UFEoS into the virial equation of state in the region of a rarefi ed gas, c) in a wide vicinity of the critical point is consistent with the scaling Berestov equation. On the basis of UFEoS in the temperature range from the triple point temperature, 195.15 K to 450 K and pressures from 0.1 MPa to 100 MPa, thermodynamic tables of standard reference data in the singlephase region and on the saturation line, including density, entropy and enthalpy, speed of sound, isochoric and isobaric heat capacities and heat of vaporization are calculated. Based on GOST 34100.3-2017/ISO/IEC Guide 98-3:2008 and the international methodology recommended for assessing the uncertainty of tabulated data, the uncertainty of the properties included in these standard tables was estimated. A comparative analysis of the properties calculated by the UFEoS with the experimental and literature data on the properties of R1233zd(E) has been made.

About the Authors

V. A. Kolobaev
All-Russian Research Institute of Metrological Service
Russian Federation

Viktor A. Kolobaev

Moscow



S. V. Rykov
University ITMO
Russian Federation

Sergey V. Rykov

St. Petersburg



I. V. Kudryavtseva
University ITMO
Russian Federation

Irina V. Kudryavtseva

St. Petersburg



E. E. Ustyuzhanin
National Research University “MPE”
Russian Federation

Evgeniy E. Ustyuzhanin

Moscow



P. V. Popov
All-Russian Research Institute of Metrological Service
Russian Federation

Peter V. Popov

Moscow



V. A. Rykov
University ITMO
Russian Federation

Vladimir A. Rykov

St. Petersburg



A. D. Kozlov
All-Russian Research Institute of Metrological Service
Russian Federation

Aleksandr D. Kozlov

Moscow



References

1. Nair V., Int. J. Refrig., 2021, vol. 122, pp. 156–170. https://doi.org/10.1016/j.ijrefrig.2020.10.039

2. Mondé jar M. E., McLinden M. O., Lemmon E. W., J. Chem. Eng. Data, 2015, vol. 60, pp. 2477–2489. https://doi.org/10.1021/acs.jced.5b00348

3. Di Nicola G., Fedele L., Brown J. S., Bobbo S., Coccia G., J. Chem. Eng. Data, 2017, vol. 62, pp. 2496–2500. https://doi.org/10.1021/acs.jced.6b00916

4. Hulse R. J., Basu R. S., Singh R. R., Thomas R. H. P., J. Chem. Eng. Data, 2012, vol. 57, pp. 3581–3586. https://doi.org/10.1021/je300776s

5. Tanaka K., Trans. Jpn. Soc. Refrig. Air Cond. Eng., 2016, vol. 33, pp. 105–111. https://doi.org/10.11322/tjsrae.15-48_OA

6. Li Sh., Yang F., Zhang K., Duan Y., Yang Zh., J. Chem. Eng. Data, 2019, vol. 64, pp. 2947–2954. https://doi.org/10.1021/acs.jced.9b00001

7. Yin J., Ke J., Zhao G., Ma S., Int. J. Refrig., 2021, vol. 121, pp. 253–257. https://doi.org/10.1016/j.ijrefrig.2020.09.010

8. Sakoda N., Higashi Y., Akasaka R., J. Chem. Eng. Data, 2020, vol. 65, pp. 4285–4289. https://doi.org/10.1021/acs.jced.0c00239

9. Tanaka K., J. Chem. Eng. Data, 2016, vol. 61, pp. 3570– 3572. https://doi.org/10.1021/acs.jced.6b00502

10. Fedele L., Pierantozzi M., Di Nicola G., Brown J. S., Bobbo S., J. Chem. Eng. Data, 2018, vol. 63, pp. 225–232. https://doi.org/10.1021/acs.jced.7b00841

11. Romeo R., Giuliano Albo P. A., Lago S., Brown J. S., Int. J. Refrig., 2017, vol. 79, pp. 176–182. https://doi.org/10.1016/j.ijrefrig.2017.04.003

12. Lago S., Giuliano Albo P. A., Brown J. S., Bertinetti M., J. Chem. Eng. Data, 2018, vol. 63, pp. 4039–4045. https://doi.org/10.1021/acs.jced.8b00427

13. Liu Y., Zhao X., Int. J. Refrig., 2018, vol. 86, pp. 127–132. https://doi.org/10.1016/j.ijrefrig.2017.11.015

14. Berestov A. T., Equation of state in the critical region with inclusion of non-asymptotic terms, Sov. Phys. JETP, 1977, vol. 45, no. 1, pp. 184–187.

15. Rykov V. A., Rykov S. V., Kudryavtseva I. V., Sverdlov A. V., J. Phys.: Conf. Ser., 2017, vol. 891, 012334. https://doi.org/10.1088/1742-6596/891/1/012334

16. Kudryavtseva I. V., Rykov V. A., Rykov S. V., J. Phys.: Conf. Ser., 2019, vol. 1385, 012009. https://doi.org/10.1088/1742-6596/1385/1/012009

17. Kolobaev V. A., Rykov S. V., Kudryavtseva, I. V. et al., Measurement Techniques, 2021, vol. 64, no. 2, pp. 86–93. https://doi.org/10.1007/s11018-021-01901-9

18. Rykov S. V., Kudryavtseva I. V., J. Phys.: Conf. Ser., 2021, vol. 2057, 012112. https://doi.org/10.1088/1742-6596/2057/1/012112

19. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., J. Eng. Phys. Thermophys., 1992, vol. 62, no 6, pp. 611–617. https://doi.org/10.1007/BF00851887

20. Kudryavtseva I. V., Rykov V. A., Rykov S. V., Ustyuzhanin E. E., J. Phys.: Conf. Ser., 2018, vol. 946, 012118. https://doi.org/10.1088/1742-6596/946/1/012118

21. Rykov S. V., Kudryavtseva I. V., Rykov V. A., J. Phys.: Conf. Ser., 2020, vol. 1565, 012038. https://doi.org/10.1088/1742-6596/1565/1/012038

22. Ma Sh., Modern Theory of Critical Phenomena, AddisonWesley, 1976, 561 p.

23. Benedek G. B., Polarisation Matiere et Rayonnement – Volume Jubilaire en l’Honneur d’Alfred Kastler, Presses Universitaires de Paris, Paris, 1968, p. 71.

24. Rykov S. V., The fundamental equation of state considering asymmetry of fl uid, Scientifi c and Technical Volga region Bulletin, 2014, no. 1, pp. 33–36. (In Russ.)

25. Agayan V. A., Anisimov M. A., Sengers J. V., Phys. Rev. E, 2001, vol. 64, 026125. https://doi.org/10.1103/PhysRevE.64.026125

26. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Ustyuzhanin E. E., Ochkov V. F., J. Phys. Conf. Ser., 2019, vol. 1147, 012017. https://doi.org/10.1088/1742-6596/1147/1/012017

27. Mares R., Profous O., and Sifner O., Int. J. Thermophys., 1999, vol. 20, no. 3, pp. 933–942. https://doi.org/10.1023/A:1022647605881


Review

For citations:


Kolobaev V.A., Rykov S.V., Kudryavtseva I.V., Ustyuzhanin E.E., Popov P.V., Rykov V.A., Kozlov A.D. Thermodynamic properties of R1233zd(E) refrigerant: a technique for constructing the fundamental equation of state and tabulated data. Izmeritel`naya Tekhnika. 2022;(5):22-28. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-5-22-28

Views: 259


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)