

Thermodynamic properties of R1233zd(E) refrigerant: a technique for constructing the fundamental equation of state and tabulated data
https://doi.org/10.32446/0368-1025it.2022-5-22-28
Abstract
The substance trans-1-chloro-3,3,3-trifluoro-1-propene (R1233zd(E)) refers to fl uorinated hydrocarbon compounds; it is currently being considered as an alternative, fi rstly, to the refrigerant R245fa, which works in organic Rankine cycles. Secondly, R1233zd(E) works as an alternative to the R134a and R123 refrigerants previously used in chillers. To calculate the equilibrium properties (density, entropy, etc.) of this substance, a unifi ed fundamental equation of state (UFEoS) is proposed that satisfi es a number of requirements, including: a) takes into account the asymmetric nature of the behavior of a real fl uid relative to the critical isochore in accordance with the requirements of modern physics of critical phenomena, b) implements the transition of the UFEoS into the virial equation of state in the region of a rarefi ed gas, c) in a wide vicinity of the critical point is consistent with the scaling Berestov equation. On the basis of UFEoS in the temperature range from the triple point temperature, 195.15 K to 450 K and pressures from 0.1 MPa to 100 MPa, thermodynamic tables of standard reference data in the singlephase region and on the saturation line, including density, entropy and enthalpy, speed of sound, isochoric and isobaric heat capacities and heat of vaporization are calculated. Based on GOST 34100.3-2017/ISO/IEC Guide 98-3:2008 and the international methodology recommended for assessing the uncertainty of tabulated data, the uncertainty of the properties included in these standard tables was estimated. A comparative analysis of the properties calculated by the UFEoS with the experimental and literature data on the properties of R1233zd(E) has been made.
About the Authors
V. A. KolobaevRussian Federation
Viktor A. Kolobaev
Moscow
S. V. Rykov
Russian Federation
Sergey V. Rykov
St. Petersburg
I. V. Kudryavtseva
Russian Federation
Irina V. Kudryavtseva
St. Petersburg
E. E. Ustyuzhanin
Russian Federation
Evgeniy E. Ustyuzhanin
Moscow
P. V. Popov
Russian Federation
Peter V. Popov
Moscow
V. A. Rykov
Russian Federation
Vladimir A. Rykov
St. Petersburg
A. D. Kozlov
Russian Federation
Aleksandr D. Kozlov
Moscow
References
1. Nair V., Int. J. Refrig., 2021, vol. 122, pp. 156–170. https://doi.org/10.1016/j.ijrefrig.2020.10.039
2. Mondé jar M. E., McLinden M. O., Lemmon E. W., J. Chem. Eng. Data, 2015, vol. 60, pp. 2477–2489. https://doi.org/10.1021/acs.jced.5b00348
3. Di Nicola G., Fedele L., Brown J. S., Bobbo S., Coccia G., J. Chem. Eng. Data, 2017, vol. 62, pp. 2496–2500. https://doi.org/10.1021/acs.jced.6b00916
4. Hulse R. J., Basu R. S., Singh R. R., Thomas R. H. P., J. Chem. Eng. Data, 2012, vol. 57, pp. 3581–3586. https://doi.org/10.1021/je300776s
5. Tanaka K., Trans. Jpn. Soc. Refrig. Air Cond. Eng., 2016, vol. 33, pp. 105–111. https://doi.org/10.11322/tjsrae.15-48_OA
6. Li Sh., Yang F., Zhang K., Duan Y., Yang Zh., J. Chem. Eng. Data, 2019, vol. 64, pp. 2947–2954. https://doi.org/10.1021/acs.jced.9b00001
7. Yin J., Ke J., Zhao G., Ma S., Int. J. Refrig., 2021, vol. 121, pp. 253–257. https://doi.org/10.1016/j.ijrefrig.2020.09.010
8. Sakoda N., Higashi Y., Akasaka R., J. Chem. Eng. Data, 2020, vol. 65, pp. 4285–4289. https://doi.org/10.1021/acs.jced.0c00239
9. Tanaka K., J. Chem. Eng. Data, 2016, vol. 61, pp. 3570– 3572. https://doi.org/10.1021/acs.jced.6b00502
10. Fedele L., Pierantozzi M., Di Nicola G., Brown J. S., Bobbo S., J. Chem. Eng. Data, 2018, vol. 63, pp. 225–232. https://doi.org/10.1021/acs.jced.7b00841
11. Romeo R., Giuliano Albo P. A., Lago S., Brown J. S., Int. J. Refrig., 2017, vol. 79, pp. 176–182. https://doi.org/10.1016/j.ijrefrig.2017.04.003
12. Lago S., Giuliano Albo P. A., Brown J. S., Bertinetti M., J. Chem. Eng. Data, 2018, vol. 63, pp. 4039–4045. https://doi.org/10.1021/acs.jced.8b00427
13. Liu Y., Zhao X., Int. J. Refrig., 2018, vol. 86, pp. 127–132. https://doi.org/10.1016/j.ijrefrig.2017.11.015
14. Berestov A. T., Equation of state in the critical region with inclusion of non-asymptotic terms, Sov. Phys. JETP, 1977, vol. 45, no. 1, pp. 184–187.
15. Rykov V. A., Rykov S. V., Kudryavtseva I. V., Sverdlov A. V., J. Phys.: Conf. Ser., 2017, vol. 891, 012334. https://doi.org/10.1088/1742-6596/891/1/012334
16. Kudryavtseva I. V., Rykov V. A., Rykov S. V., J. Phys.: Conf. Ser., 2019, vol. 1385, 012009. https://doi.org/10.1088/1742-6596/1385/1/012009
17. Kolobaev V. A., Rykov S. V., Kudryavtseva, I. V. et al., Measurement Techniques, 2021, vol. 64, no. 2, pp. 86–93. https://doi.org/10.1007/s11018-021-01901-9
18. Rykov S. V., Kudryavtseva I. V., J. Phys.: Conf. Ser., 2021, vol. 2057, 012112. https://doi.org/10.1088/1742-6596/2057/1/012112
19. Kozlov A. D., Lysenkov V. F., Popov P. V., Rykov V. A., J. Eng. Phys. Thermophys., 1992, vol. 62, no 6, pp. 611–617. https://doi.org/10.1007/BF00851887
20. Kudryavtseva I. V., Rykov V. A., Rykov S. V., Ustyuzhanin E. E., J. Phys.: Conf. Ser., 2018, vol. 946, 012118. https://doi.org/10.1088/1742-6596/946/1/012118
21. Rykov S. V., Kudryavtseva I. V., Rykov V. A., J. Phys.: Conf. Ser., 2020, vol. 1565, 012038. https://doi.org/10.1088/1742-6596/1565/1/012038
22. Ma Sh., Modern Theory of Critical Phenomena, AddisonWesley, 1976, 561 p.
23. Benedek G. B., Polarisation Matiere et Rayonnement – Volume Jubilaire en l’Honneur d’Alfred Kastler, Presses Universitaires de Paris, Paris, 1968, p. 71.
24. Rykov S. V., The fundamental equation of state considering asymmetry of fl uid, Scientifi c and Technical Volga region Bulletin, 2014, no. 1, pp. 33–36. (In Russ.)
25. Agayan V. A., Anisimov M. A., Sengers J. V., Phys. Rev. E, 2001, vol. 64, 026125. https://doi.org/10.1103/PhysRevE.64.026125
26. Rykov S. V., Kudryavtseva I. V., Rykov V. A., Ustyuzhanin E. E., Ochkov V. F., J. Phys. Conf. Ser., 2019, vol. 1147, 012017. https://doi.org/10.1088/1742-6596/1147/1/012017
27. Mares R., Profous O., and Sifner O., Int. J. Thermophys., 1999, vol. 20, no. 3, pp. 933–942. https://doi.org/10.1023/A:1022647605881
Review
For citations:
Kolobaev V.A., Rykov S.V., Kudryavtseva I.V., Ustyuzhanin E.E., Popov P.V., Rykov V.A., Kozlov A.D. Thermodynamic properties of R1233zd(E) refrigerant: a technique for constructing the fundamental equation of state and tabulated data. Izmeritel`naya Tekhnika. 2022;(5):22-28. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-5-22-28