

Bases for identifcation of spatial distribution of intensity laser beams
https://doi.org/10.32446/0368-1025it.2022-4-30-36
Abstract
The fundamentals of identification of spatial distributions of laser beam intensity are presented. This identification is essential for the certification of laser sources. The task of identification is to assess the similarity of the distribution of the intensity of the radiated field with a given (calculated) distribution. A methodology for identifying spatial distributions of laser beam intensity is proposed. To form measures of similarity of the intensity distribution of the radiated field with an arbitrarily given distribution, a mathematical apparatus based on functional inequalities has been developed. Various measures of similarity are considered, a number of spatial intensity distributions are compared with Gaussian and uniform intensity distributions depending on the dynamic range of the identification tool. The sensitivity of similarity measures to the shape of the intensity distribution of the emitted field is shown. It is proved that such well-known characteristics as the aberration factor and the propagation coefficient of the laser beam are special cases of measures based on solutions of functional inequalities.
About the Authors
A. M. RaitsinRussian Federation
Arkady M. Raitsin
Moscow
M. V. Ulanovskii
Russian Federation
Michael V. Ulanovskii
Moscow
References
1. Anan’ev Yu. A., Opticheskie rezonatory i lazernye puchki, Moscow, Nauka Publ., 1990, 264 р. (In Russ.)
2. Matsak I. S., Kudryavtsev E. M., Tugaenko V. Yu., Modelling diameter measurement errors of a wide-aperture laser beam with fl at profi le, Computer Research and Modeling, 2015, vol. 7, no. 1, pp. 113– 124. (In Russ.) https://doi.org/10.20537/2076-7633-2015-7-1-113-124
3. Matsak I. S., Tugaenko V. Yu., Sergeev E. S., Measurement Techniques, 2014, vol. 57, no. 6, pp. 651–657. https://doi.org/10.1007/s11018-014-0514-0
4. Ji-chuan Xing, Yan Song, Proceedings of SPIE – The International Society for Optical Engineering, 2012, 8417. https://doi.org/10.1117/12.976829
5. Raitsin A. M., Ulanovskii M. V., Measurement Techniques, 2015, vol. 58, no. 6, pp. 630–633. https://doi.org/10.1007/s11018-015-0766-3
6. Kasparov V. M., Raitsin A. M., Ulanovskii M. V., Measurement Techniques, 2017, vol. 59, no. 10, pp. 1078–1083. https://doi.org/10.1007/s11018-017-1095-5
7. Raitsin A. M., Measurement Techniques, 2011, vol. 54, no. 2, pp. 162–169. https://doi.org/10.1007/s11018-011-9700-5
8. Bezuglov D. A., Shvidchenko S. A., Kumulyantnyi metod opredeleniya zakona raspredeleniya, H&ES Research – Naukoemkie tekhnologii v kosmicheskikh issledovaniyakh Zemli, 2011, no. 1, pp. 11–14. (In Russ.)
9. Tsypkin Ya. Z., Informatsionnaya teoriya identifi katsii, Moscow, Nauka Fizmatlit Publ., 1995, 336 p. (In Russ.)
10. Gulamov A. A., Formirovanie supergaussovykh puchkov, Uchenye zapiski, Ehlektronnyi nauchnyi zhurnal Kurskogo Gosudarstvennogo universiteta, 2006, no. 1, pp. 59–70. (In Russ.)
11. Potemkin A. K. et al., Quantum Electronics, 2005, no. 35 (11), 1042. http://dx.doi.org/10.1070/QE2005v035n11ABEH012788
Review
For citations:
Raitsin A.M., Ulanovskii M.V. Bases for identifcation of spatial distribution of intensity laser beams. Izmeritel`naya Tekhnika. 2022;(4):30-36. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-4-30-36