Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Metrological aspects of harmonic self-organization

https://doi.org/10.32446/0368-1025it.2022-3-9-16

Abstract

The features of self-organization of complex systems of various nature at micro-, meso- and macro-levels, taking into account environmental conditions, are investigated. It is shown that the basis of the environmental impact model in the processes of selforganization is a four-digit measurement logic associated with the likelihood of errors of the fi rst and second kind when compared with measures. Harmonic self-organization is caused by the quantization of infl uences, as a result of which the matrices of measurement-eff ects are transformed into matrices of quantum measurements, characterized by a parameter of the order of generalized golden proportions. Patterns of harmonious self-organization in the form of complexes of elements in matrices are considered, on the basis of which quantum complex scales are constructed that allow classifying elements. Examples of the appearances of harmonic self-organization are given.

About the Authors

S. L. Chernyshev
K. E. Tsiolkovsky Russian State Technological University
Russian Federation

Sergey L. Chernyshev

Moscow 



A. S. Chernyshev
Rosgeo
Russian Federation

Alexander S. Chernyshev

Moscow 



References

1. Nicolis G., Prigogine I., Exploring Complexity, Piper-Verlag, Munich, Germany, 1987.

2. Malinetsky G. G., Voitsekhovich V. E., Vol’nov I. N., Kolesnikov A. V., Skiba I. R., Soroko Ye. M. Krasota I harmonia v tsifrovuyu epochu: Matematika – iskusstvo – iskusstvennyi intellect. Budushchee I humanitarno-technologicheskaya revolyutsia [Beauty and Harmony in the Digital Age: Mathematics – Art – Artifi cial Intelligence. The future and the humanitarian and technological revolution], Moscow, LENAND Publ., 2021, 240 p. (in Russ.)

3. Chernyshev S. L., Isaev L. K., Kozlov A. D., Measurement Techniques, 2020, no. 8, vol. 63, pp. 602–609. https://doi.org/10.1007/s11018-020-01829-6

4. Kadomtsev B. B., Dinamika I informatsia [Dynamics and information], Moscow, Uspekhi fi zicheskikh nauk Publ., 1997, 400 p. (in Russ.)

5. Chernyshev S. L., Dmitriev A. S., Model nespetsifi cheskogo vozdeistvia okruzhayushchei sredy [Model of Nonspecifi c Infl uence of the Environment], Preprint No. 4(604), Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, 1995. (in Russ.)

6. Chernyshev S. L., Chernyshev L. S., Measurement Techniques, 2006, no. 12, vol. 49, pp. 1171–1178. https://doi.org/10.1007/s11018-006-0256-8

7. Isaev L. K., Chernyshev S. L., Based of the scale theory classifi cation of the elements with defi ned sequential numbers, Nonlinear World, 2007, no. 10–11, vol. 5, pp. 705–711. (in Russ.)

8. Chernyshev S. L., Modelirovanie I classifi catsia nanoob’ektov [Modeling and classifi cation of nanostructures] Moscow, LIBROCOM Publ., 2011, 216 p. (in Russ.)

9. Chernyshev S. L., Figurnye chisla: Modelirovanie I classifi catsia slozhnykh ob’ektov [Figurate numbers: Modeling and classifi cation of complex objects], Moscow, KRASAND Publ., 2015, 400 p. (in Russ.)

10. Chernyshev A. S., Chernyshev S. L., The manifestation of harmonic self-organization in the economy, Zakonodatelnaya I prikladnaya metrologia, 2021, no. 6, pp. 40–44. (in Russ.)

11. Kholevo A. S., Vvedenie v kvantovuyu teoriu informatsii [Introduction to Quantum Theory of Information], Moscow, MTsNMO, 2005. (in Russ.)

12. Matematicheskaya fi zika. Yentsiklopedia [Mathematical physics. Encyclopedia], Editor-in-chief L. D. Fadeev, Moscow, The Great Russian Encyclopedia, 1998. (in Russ.)

13. Mensky M. B., Quantum Measurements and Decoherence: Models and Phenomenology Dordrecht, Kluwer Academic Publ., 2000.

14. Sysoev S. S., Vvedenie v kvantovye vychislenia. Kvantovye algoritmy [Introduction to quantum computing. Quantum algorithms]: studies, St. Petersburg, Publishing House of St. Petersburg University, 2019, 144 p. (in Russ.)

15. Stakhov A. P., Vvedenie v algoritmicheskuyu teoriu izmereniy [Introduction to algorithmic measurement Theory], Moscow, Sovetskoe radio Publ., 1977. (in Russ.)

16. Soroko E. M. Zolotye sechenia, protsessy samoorganizatsii I evolyuzii sistem: Vvedenie v obshchuyu teoriu garmonii [Golden sections, processes of self-organization and evolution of systems: Introduction to the general theory of harmony], 4th ed., Moscow, Book House LIBROCOM, 2012, 264 p. (in Russ.)

17. Ivanova V. S., Vvedenie v mezhdistsiplinarnoe nanomaterialovedenie [Introduction to Interdisciplinary Nanomaterial Science], Moscow, SAINS-PRESS, 2005. (in Russ.)

18. Prangishvili I. V. Entropia I drugie sistemnye zakonomernosti: Voprosy upravlenia slozhnymi sistemami [Entropy and other system patterns: Issues of complex systems management], Moscow, Nauka publ., 2003, 428 p. (in Russ.)

19. Panchadhyayee P., Biswas R., Khan A., Mahapatra P. K., J. Phys. Condens. Matter, 2008, vol. 20, no. 27, 275243. https://doi.org/10.1088/0953-8984/20/27/275243

20. Postavaru O., Toma A., Chaos, Soliton and Fractals, 2022, vol. 154, 111619. https://doi.org/10.1016/j.chaos.2021.111619

21. Chernyshev S. L. Measurement Techniques, 2007, vol. 50, no. 12, pp. 1234–1239. https://doi.org/10.1007/s11018-007-0231-z

22. Chernyshev S. L., Chernyshev L. S., Superlattices and fi gurate numbers in the model of signal processing system and colour perception, Journal of Radio Electronics, 2013, no. 12, p. 18


Review

For citations:


Chernyshev S.L., Chernyshev A.S. Metrological aspects of harmonic self-organization. Izmeritel`naya Tekhnika. 2022;(3):10-16. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-3-9-16

Views: 141


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)