Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Verifcation of the method for assessing systematic errors of the balance calibration machine

https://doi.org/10.32446/0368-1025it.2022-2-44-50

Abstract

The systematic errors of the 6GS-40M calibration machine of the Central Aerohydrodynamic Institute are investigated. The machine is designed for calibration of external and internal six-component strain-gauge balances with a maximum normal force of 40 kN. Proceeding from requirements to the aerodynamic characteristic errors of aircraft models during their tests in wind tunnels, the requirements to the calibration errors of strain-gauge balances were obtained: the calibration error related to half of range of the calibration machine components must not exceed 0.05 %. A method is developed for experimental evaluation of systematic errors of calibration machine. Experimental studies were carried out with the help of the developed method to determine the systematic errors of the 6GS-40M calibration machine. Previously obtained analytical expressions for the systematic errors were verifi ed by the results of the experiment. We estimated the corrections to the loads set by the 6GS-40M calibration machine to external and internal six-component strain-gauge balances. The range of corrections was from 0.09 to 0.90 % for the diff erent components of the balances. The developed method of experimental determination of systematic errors may be used for other calibration machines.

About the Authors

V. S. Volobuev
Central Aerohydrodynamic Institute (TsAGI)
Russian Federation

Valery S. Volobuev

Zhukovsky, Moscow region



A. R. Gorbushin
Central Aerohydrodynamic Institute (TsAGI); Moscow Institute of Physics and Technology (MIPT)
Russian Federation

 Anton R. Gorbushin

Zhukovsky, Moscow region;

Dolgoprudny, Moscow region



V. A. Zavyalov
Central Aerohydrodynamic Institute (TsAGI)
Russian Federation

Vladimir A. Zavyalov

Zhukovsky, Moscow region



References

1. Frank L., Experience relative to the interaction between balance engineer and the project engineer with regard to measurement uncertainty, Proceedings of a First International Symposium on Strain Gauge Balances First International Symposium on Strain Gauge Balances, USA, October 22–25, 1996, рр. 243–277. URL: https://ntrs.nasa.gov/api/citations/19990072764/ downloads/19990072764.pdf (дата обращения: 07.02.2022).

2. Бухаров К. Д., Горбушин А. Р., Карташев Ю. В., Петроневич В. В., Судакова И. А., Чернышев С. Л. Апробация весового непрерывного эксперимента в трансзвуковой аэродинамической трубе Т-128 на дозвуковых режимах // Учёные записки ЦАГИ. 2017. Т. XLVIII. № 7. С. 27–45.

3. Гусев В. П., Тихомиров В. И. Основные систематические погрешности калибровочного стенда МСЭ-000 // Труды ЦАГИ. 1983. Вып. 2207. С. 107–114.

4. First International Symposium on Strain Gauge Balances, USA, October 22–25, 1996. URL: https://ntrs.nasa.gov/api/cita tions/19990072764/downloads/19990072764.pdf (дата обращения: 07.02.2022).

5. Ewald B. F. R., Measurement Science and Technology, 2000, vol. 11, no. 6, pp. 81–94. https://doi.org/10.1088/0957-0233/11/6/201

6. Hufnagel K., Quade M., Proceedings 45th AIAA Aerospace Sci. Meeting and Exhibit., 08–11 January 2007, Reno, Nevada, AIAA, 2007. https://doi.org/10.2514/6.2007-148

7. Zhu Ben-hua, Liang Lei, Crucial technology analysis on restoration measurement of automatic balance calibration system, Ordnance industry automation, 2009, vol. 28 (12), pp. 79–88.

8. Xiong Lin, Wang Jinyin, Liu Jiahua, Wen Shuai, Liu Chunfeng, Jiang Ping, J. Experiments in Fluid Mechanics, 2015, vol. 29 (6), pp. 84–88. https://doi.org/10.11729/syltlx20140144

9. Landman D., Toro K. G., Commo S. A., Lynn K. C., Journal of Aircraft, 2015, vol. 52, no. 3. https://doi.org/10.2514/1.C032930

10. Волобуев В. С., Горбушин А. Р., Судакова И. А., Тихомиров В. И. Два способа калибровки тензометрических весов на калибровочных стендах ЦАГИ // Учёные записки ЦАГИ. 2017. Т. XLVIII. № 2. С. 62–70.

11. Большакова А. А., Волобуев В. С., Горбушин А. Р., Петроневич В. В. Исследование систематических погрешностей калибровочного стенда 6ГС-40М // Измерительная техника. 2017. № 8. С. 10–14.

12. Toro K., Burns D., Parker P. A., Aerodynamic Measurement Technology and Ground Testing Conference, June 25–29, 2018, Atlanta, Georgia, AIAA, 2018, 4108. https://doi.org/10.2514/6.2018-4108

13. Danilov M. N., Bardaev P. P., AIP Conference Proceedings, 2019, vol. 2125, 030091. https://doi.org/10.1063/1.5117473

14. Simpson J., Landman D., Giroux R., Zeisset M., Hall B., Rhew R., U.S. Air Force T&E Days, 06–08 December 2005, Nashville, Tennessee, AIAA, 2005, 7601. https://doi.org/10.2514/6.2005-7601

15. Буров В. В., Волобуев В. С., Глазков С. А., Горбушин А. Р., Чумаченко Е. К. Измерительно-вычислительный комплекс трансзвуковой аэродинамической трубы Т-128 // Датчики и системы. 2010. № 5 (132). С. 20–24.

16. Glazkov S. A., Gorbushin A. R., Ivanov A. I., Semenov A. V., Progress in Aerospace Sciences, 2001, vol. 37, no. 3, pp. 263–298. https://doi.org/10.1016/S0376-0421(01)00007-0

17. Quest J., Schimanski D., Proceedings 41th AIAA: Aerospace Sci. Meeting and Exhibit., 06–09 January 2003, Reno, Nevada, AIAA, 2003, 755. https://doi.org/10.2514/6.2003-755

18. Горбушин А. Р., Колесников А. И. Трёхкомпонентная математическая модель одноосевого акселерометра для измерения углов тангажа и крена // Измерительная техника. 2019. № 2. С. 23–28. https://doi.org/10.32446/0368-1052it.2019-2-23-28

19. Toro K. G., Parker P. A., AIAA Aviation 2019 Forum, 17–21 June 2019, Dallas, Texas, AIAA, 2019, 2807. https://doi.org/10.2514/6.2019-2807


Review

For citations:


Volobuev V.S., Gorbushin A.R., Zavyalov V.A. Verifcation of the method for assessing systematic errors of the balance calibration machine. Izmeritel`naya Tekhnika. 2022;(2):44-50. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-2-44-50

Views: 91


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)