

Measuring the effect of gravitational time dilation in a duplex ground-based quantum level
https://doi.org/10.32446/0368-1025it.2022-2-22-27
Abstract
For the first time, the possibility of measuring the difference in gravitational potentials and orthometric heights using a quantum level based on the gravitational effect of time dilation using ground communication lines is considered. The duplex mode of measurements using two opposite radio channels is theoretically described. The deceleration effect was experimentally measured using a one-way radio link implemented on a fiber-optic link. For measurements, stationary and relocatable quantum hydrogen clocks with relative instability, respectively, (0.5–0.7)∙10–15 and 1∙10–15 were used. It was found that in the experiment the gravitational redshift of the frequency between the clocks used has two components: the redshift of the clock master oscillator frequency and the classical redshift in the radio channel. Based on the measurement results, the altitude of the relocated quantum hydrogen clock was calculated, which was (–34.0±0.8) m at the actual altitude –34 m.
About the Authors
V. F. FateevRussian Federation
Vyacheslav F. Fateev
Mendeleevo, Moscow region
F. R. Smirnov
Russian Federation
Fedor R. Smirnov
Mendeleevo, Moscow region
S. S. Donchenko
Russian Federation
Sergey S. Donchenko
Mendeleevo, Moscow region
References
1. Landau L. D., Lifshic E. M., Teoriya polya, Moscow, Nauka Publ., 1967, 460 p. (In Russ.)
2. Fateev V. F., Sysoev V. P., Rubakov E. A., Measurement Techniques, 2016, vol. 59, no. 4, pp. 402–404. https://doi.org/10.1007/s11018-016-0979-0
3. Fateev V. F., Zharikov A. I., Sysoev V. P., Rubakov E. A., Smirnov F. R., Doklady Earth Sciences, 2017, vol. 472, pt. 1, pp. 91– 94. https://doi.org/10.1134/S1028334X17010147
4. Fateev V. F., Rybakov E. A., Doklady Physics, 2021, vol. 66, pt. 1, pp. 17–19. https://doi.org/10.1134/S1028335820110038
5. Fateev V. F., Relyativistskaya metrologiya okolozemnogo prostranstva-vremeni: monografi ya, Mendeleevo, VNIIFTRI Publ., 2017, 439 p. (In Russ.)
6. Oduan K., Gino B., Izmerenie vremeni. Osnovy GPS, Translated from Eng. Yu. S. Domnin, ed. V. M. Tatarenkov, with an addendum (Pt. 10) M. B. Kaufman, Moscow, Tekhnosfera Publ., 2002, 400 p. (In Russ.)
7. Ashby N., Relativity in the Global Positioning System, Living Revievs in Relativity, 2003, vol. 6, pр. 1–42.
8. GLONASS Interface control document, Edition 5.1, 2008, available at: https://russianspacesystems.ru/wp-content/uploads/2016/08/ ICD_GLONASS_rus_v5.1.pdf (accessed: 28.12.2021).
9. Herrmann S., Finke F., Lülf M., et. al., Test of the Gravitational Redshift with Galileo Satellites in an Eccentric Orbit, December 24, 2018, available at: https://arxiv.org/pdf/1812.09161.pdf (accessed: 28.12.2021).
10. Delva P., Puchades N., Schönemann E., et. al., Physical Review Letters, 2018, vol. 121, 231101. https://doi.org/10.1103/PhysRevLett.121.231101
Review
For citations:
Fateev V.F., Smirnov F.R., Donchenko S.S. Measuring the effect of gravitational time dilation in a duplex ground-based quantum level. Izmeritel`naya Tekhnika. 2022;(2):22-27. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-2-22-27