Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The choice of reference circles when analysis the roundness of parts for ball bearings

https://doi.org/10.32446/0368-1025it.2022-2-14-21

Abstract

The scientific rationale for the choice of reference circles in the analysis of the roundness of rolling bearing parts is presented. The selection criteria were: physical interpretability, minimum roundness, reliability and performance of the calculation algorithm. The measurement of the inner and outer surfaces of the rings and balls of a single-row radial bearing was carried out on a roundness testers and a coordinate measuring machine. The values of roundness are calculated using four reference circles: least squares, minimum zone, minimum circumscribed, maximum inscribed. It was found that the calculation along the minimum zone circle provides the minimum value of roundness. Statistical Monte-Carlo modeling was carried out to assess the distribution of roundness in a batch of bearings. For this, a technique has been developed that allows, on the basis of harmonic analysis, to identify the distribution parameters of the amplitudes and initial phases of the harmonics of the profi le of parts, and then to simulate the distribution in the batch into account the correlation. The results of statistical modeling have confi rmed that the minimum zone circle has the minimum value of roundness in terms of the arithmetic mean and standard deviation. A numerical algorithm for minimizing the functional in the form of the widt hof the minimum zone was applied to calculate the center of the minimum zone circle. In the area of performance of the objective function, there is one local minimum. The algorithm has proven to be reliable and effi cient. Taking into account all the criteria, it is recommended to use the minimum zone circle for the analysis of the roundness of the rings and balls of rolling bearings.

About the Authors

О. V. Zakharov
Yuri Gagarin State Technical University of Saratov; Perm State Agro-Technological University named after Academician D. N. Pryanishnikov
Russian Federation

Оleg V. Zakharov

Saratov



K. G. Pugin
Perm National Research Polytechnic University; Perm State Agro-Technological University named after Academician D. N. Pryanishnikov
Russian Federation

Konstantin G. Pugin 

Perm



References

1. Whitehouse David J., Handbook of Surface and Nanometrology, Second Edition, CRC Press – Taylor & Francis Group, Boca Raton, 2010, 975 p.

2. Zakharov O. V., Kochetkov A. V., Measurement Techniques, 2016, vol. 58, no. 6, pp. 1317–1321. https://doi.org/10.1007/s11018-016-0892-6

3. Zakharov O. V., Brzhozovskii B. M., Measurement Techniques, 2006, vol. 49, no. 11, pp. 1094–1097. https://doi.org/10.1007/s11018-006-0242-1

4. Grechnikov F. V., Rezchikov A. F., Zakharov O. V., Measurement Techniques, 2018, vol. 61, no. 4, pp. 347–352. https://doi.org/10.1007/s11018-018-1432-3

5. Mekid S., Vacharanukul K., Measurement, 2011, vol. 44, iss. 4, pp. 762–766. https://doi.org/10.1016/j.measurement.2011.01.011

6. Zhou Y., Li Q., Chu L., Ma Y., Zhang J., Meas. Sci. Technol., 2020, vol. 31, 065002. https://doi.org/10.1088/1361-6501/ab6ecd

7. Zayakin O. A., Manukhin A. V., Rostov A. A., Pilot laser roundness meter, research for the main measurement error, Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2017, no. 6, pp. 184–188. (In Russ.)

8. Zakharov O. V., Bobrovskij I. N., Kochetkov A. V., Procedia Engineering, 2016, vol. 150, pp. 963–968. https://doi.org/10.1016/j.proeng.2016.07.071

9. Pechenin V. A., Bolotov M. A., Ruzanov N. V., Grachev I. A., Shcherbakov I. A., Russian Engineering Research, 2017, vol. 37, pp. 739–743. https://doi.org/10.3103/S1068798X17080135

10. Stone J., Muralikrishnan B., Sahay C., Journal of Research of the National Institute of Standards and Technology, 2011, vol. 116, pp. 573–587. http://dx.doi.org/10.6028/jres.116.006

11. Chen Y.-L., Machida Y., Shimizu Y., Matsukuma H., Gao W., CIRP Annals, 2018, vol. 67, pp. 535–538. https://doi.org/10.1016/j.cirp.2018.04.009

12. Khurtasenko A. V., Shrubchenko I. V., Timofeev S. P., Metodika opredeleniya formy naruzhnoi poverkhnosti kacheniya opor tekhnologicheskikh barabanov, Vestnik V. G. Shukhova BGTU, 2015, no. 3, pp. 85–89. (In Russ.)

13. Chybowski L., Nozdrzykowski K., Grządziel Z., Jakubowski A., Przetakiewicz W., Applied Sciences, 2020, vol. 10, iss. 14, 4722. https://doi.org/10.3390/app10144722

14. Grachev I. A., Bolotov M. A., Pechenin V. A., Kudashov E. V., Kharin K. E., J. Phys.: Conf. Ser., 2021, vol. 1745, 012087. https://doi.org/10.1088/1742-6596/1745/1/012087

15. Cao Zhi-min, Wu Yun, Han Jian, Meas. Sci. Technol., 2017, vol. 28, 105017. https://doi.org/10.1088/1361-6501/aa770f

16. Yang Liu, Ziyue Wu, Tancheng Xie, Yanwei Xu, Proceedings of the 7th International Conference on Education, Management, Computer and Society, Advances in Computer Science Research (EMCS 2017), ACSR, 2017, vol. 61, pp. 396–402. https://doi.org/10.2991/emcs-17.2017.78

17. Viitala R., Gruber G., Hemming B., Widmaier T., Tammi K., Kuosmanen P., Precision Engineering, 2019, vol. 55, pp. 59–69. https://doi.org/10.1016/j.precisioneng.2018.08.007

18. Viitala R., Widmaier T., Hemming B., Tammi K., Kuosmanen P., Precision Engineering, 2018, vol. 54, pp. 118–130. https://doi.org/10.1016/j.precisioneng.2018.05.008

19. Markov B. N., Melikova O. N., Ped’ S. E., Measurement Techniques, 2019, vol. 62, no. 2, pp. 134–138. https://doi.org/10.1007/s11018-019-01597-y

20. Sheveleva G. I., Teoriya formoobrazovaniya i kontakta dvizhushchikhsya tel, Moscow, MGTU Stankin, 1999, 494 p. (In Russ.)

21. Nikolskii A. A., Korolev V. V., Measurement Techniques, 2011, vol. 54, no. 6, pp. 640–649. https://doi.org/10.1007/s11018-011-9779-8

22. Shi S., Kuschmierz R., Zhang G., Lin J., Czarske J., Qu J., Measurement, 2020, vol. 155, 107530. https://doi.org/10.1016/j.measurement.2020.107530

23. Adamczak S., Stepień K., Kmiecik-Sołtysiak U., Procedia Engineering, 2017, vol. 192, pp. 4–9. https://doi.org/10.1016/j.proeng.2017.06.001

24. Svidetel’stvo o gos. registratsii programmy dlya EVM no. 2014612744, Raschet otklonenii ot kruglosti detalei, P. Yu. Bochkarev, O. V. Zakharov, V. V. Shalunov, E. P. Reshetnikova, 6.03.2014. (In Russ.)

25. Rossi A., Lanzetta M., Measurement, 2013, vol. 46, pp. 2251–2258. https://doi.org/10.1016/j.measurement.2013.03.025

26. Calvo R., Gómez E., Measurement, 2015, vol. 73, pp. 211–225. https://doi.org/10.1016/j.measurement.2015.04.009

27. Megiddo N., SIAM J. Comput., 1983, vol. 12, no. 4, pp. 759–776. https://doi.org/10.1137/0212052

28. Li X., Zhu H., Guo Z., Liu Y., Review of Scientifi c Instruments, 2020, vol. 91, 025105. https://doi.org/10.1063/1.5141146

29. Liu F., Xu G., Liang L., Zhang Q., Liu D., IEEE Transactions on Instrumentation and Measurement, 2016, vol. 65, no. 12, pp. 2787–2796. https://doi.org/10.1109/TIM.2016.2601003

30. Gebel I. D., Measurement Techniques, 1971, vol. 14, no. 10, pp. 1485–1492. https://doi.org/10.1007/BF00981832


Review

For citations:


Zakharov О.V., Pugin K.G. The choice of reference circles when analysis the roundness of parts for ball bearings. Izmeritel`naya Tekhnika. 2022;(2):14-21. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-2-14-21

Views: 109


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)