

The coplanar waveguide with gallium arsenide substrate for the electro-optic sampling system with a bandwidth over 110 GHz
https://doi.org/10.32446/0368-1025it.2022-1-62-67
Abstract
The issue of parameters measurements of picosecond electric pulses with bandwidth of 110 GHz and above is considered. It is proposed to use the electro-optic sampling system for the measurements. Several configurations of coplanar waveguide used as a probe in the electro-optic sampling system are presented; dimensions of waveguide with GaAs substrate are calculated. Beam energy values are calculated for the electro-optic sampling system where passed probe beam parameters are under investigation. Optical design is discussed briefly. Some optical components parameters are estimated. The issues of the sensitivity of the electro-optic sampling system and laser beam focusing into spot with a diameter of about tens of micrometers are covered.
About the Authors
M. A. ZenchenkoRussian Federation
Mikhail A. Zenchenko
Mendeleevo, Moscow region
A. V. Kleopin
Russian Federation
Andrey V. Kleopin
Mendeleevo, Moscow region
V. V. Мakarov
Russian Federation
Vladislav V. Makarov
Mendeleevo, Moscow region
L. N. Selin
Russian Federation
Leonid N. Selin
Mendeleevo, Moscow region
References
1. Harati P., Schoch B., Tessmann A., Schwantuschke D., Henneberger R., Czekala H., Zwick T., Kallfass I., IEEE Microwave Magazine, 2017, vol. 18, no. 7, pp. 64–76. https://doi.org/10.1109/MMM.2017.2738898
2. Kleopin A. V., Malay I. M., Izmeritel’naya tekhnika, 2021, no. 9, pp. 47–53. (In Russ.) https://doi.org/10.32446/0368-1025it.2021-9-47-53
3. Brusnicyna L. A., Stepanovskih E. I., Tehnologiya izgotovleniya pechatnyh plat: uchebnoe posobie [Technology of printed circuit board manufacturing: textbook], Ekaterinburg, Ural University Publ., 2015, 200 p. (In Russ.)
4. Andrew J. A. Smith, Thesis for the degree of Doctor of Philosophy, Fast Waveform Metrology: Generation, Measurement and Application of Sub-picosecond Electrical Pulses (University of London, London, 1995).
5. Howard Johnson, Martin Graham, High-speed Signal Propagation: Advanced Black Magic, Pearson Education, Inc., 2003.
6. Simons Rainee N., Coplanar Waveguide Circuits, Components and Systems, New York, John Wiley & Sons, Inc., 2001, 459 p.
7. Ghione G., Naldi C. U., IEEE Transactions on Microwave Theory and Techniques, 1987, vol. 35, no. 3, pp. 260–267. https://doi.org/10.1109/TMTT.1987.1133637
8. Kitazawa T., Hayashi Y., IEE Proceedings H (Microwaves, Antennas and Propagation), 1986, vol. 133, no. 1, pp. 18–20. https://doi.org/10.1049/ip-h-2.1986.0003
9. Stefan Lauff enburger, Thèse présentée pour obtenir le grade de docteur de l’École Nationale Supérieure des Télécommunications, Characterization of microwave Gallium Arsenide integrated circuits with electro-optic probing using a continuous laser beam / Électronique et Communications (École Nationale Supérieure des Télécommunications, Paris, 2004). (In Fr.)
10. Blistanov A. A., Kristally kvantovoy i nelineynoy optiki [Crystals in quantum and nonlinear optics], Moscow, MISIS Publ., 2000, 432 p. (In Russ.)
Review
For citations:
Zenchenko M.A., Kleopin A.V., Мakarov V.V., Selin L.N. The coplanar waveguide with gallium arsenide substrate for the electro-optic sampling system with a bandwidth over 110 GHz. Izmeritel`naya Tekhnika. 2022;(1):62-67. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-1-62-67