

Atmospheric transmission influence on the accuracy of lidar measurements of the Mie scattering power by aerosol particles
https://doi.org/10.32446/0368-1025it.2022-1-30-34
Abstract
The actual problem of improving of the lidar measurements accuracy is considered. The influence degree of the atmospheric transmission at the selected laser radiation wavelengths on the lidar signal error for the monostatic aerosol lidar is estimated. Computer simulation of the lidar equation for the elastic scattering by atmospheric aerosol particles for the estimation during vertical remote sensing of the atmospheric boundary layer up to 1500 m was carried out. It is shown that taking into account the measurement error of the extinction coefficient at the selected laser radiation wavelengths leads to the limitation of the ranging distances to obtain a given measurement error of the lidar signal. The results obtained can be applied to the development of new aerosol lidars.
About the Authors
V. E. PrivalovRussian Federation
Vadim E. Privalov
St. Petersburg
Y. V. Cherbachi
Russian Federation
Yuliya V. Cherbachi
Novorossiysk
V. G. Shemanin
Russian Federation
Valery G. Shemanin
Novorossiysk
References
1. Lidar: range-resolved optical remote sensing of the atmosphere, Ed. C. Weitkamp, SSOS, vol. 102, New-York, Springer Science, Business Media Inc, 2005, 455 p. https://doi.org/10.1007/b106786
2. Boreisho A. S., Evdokimov I. M., Ivakin S. V., Lasery: Primeneniya i prilozheniya [Lasers: Applications], еd. A. S. Boreisho, St. Petersburg, Lan’ Publ., 2016, 520 p. (In Russ.)
3. Zuyev V. E., Zuyev V. V., Distancionnoye opticheskoye zondirovaniye atmosfery [Remote optical sensing of atmosphere], St. Petersburg, Gidrometeoizdat Publ., 1992, 231 p. (In Russ.)
4. Privalov V. E., ShemaninV. G. Measurement Techniques, 2014, vol. 57, no. 4, pp. 396–400. https://doi.org/10.1007/s11018-014-0467-3
5. Krekov G. M., Krekova M. M., Sukhanov A. Ya., Lisenko A. A., Lidar equation for a broadband optical range, Technical Physics Letters, 2009, vol. 35, iss. 8, pp. 687–690.
6. Romanovskii O. A., Optical Memory and Neural Networks, 2008, vol. 17, no. 2, pp. 131–137. https://doi.org/10.3103/S1060992X08020069
7. Donchenko V. A., Kabanov M. V., Kaul B. V., Samokhvalov I. V., Atmosfernaya elektrooptica [Atmospheric electrooptics], Tomsk, NTL Publ., 2010, 220 p. (In Russ.)
8. Volkov S. N., Kaul B. V., Shelefontuk D. I., Appl. Opt., 2002, vol. 41, no. 24, pp. 5078–5083. https://doi.org/10.1364/ao.41.005078
9. Agishev R. R., Lidarny monitoring atmosfery [Lidar monitoring of the atmosphere], Moscow, Fizmatlit Publ., 2009, 313 p. (In Russ.)
10. Veselovskii I., Whiteman D. N., Korenskiy M., Kolgotin A., Dubovik O., Perez-Ramirez D., Suvorina A., Atmos. Meas. Tech., 2013, vol. 6, no. 9, pp. 2671–2682. https://doi.org/10.5194/amt-6-2671-2013
11. Laser Handbook, Ed. A. M. Prokhorov, vol. 1, Moscow, Sov. Radio Publ., 1978, 504 p. (In Russ.)
12. Andreyeva T. G. Matematika: Spetzial’ny funktzii i nekotoryye prilozheniya [Mathematics: Special functions and some applications], St. Petersburg, RSGMU Publ., 2013, 102 p. (In Russ.)
13. Privalov V. E., Shemanin V. G., Bull. Russ. Acad. Sci. Phys., 2015, vol. 79, no. 2, pp. 149–159. https://doi.org/10.3103/S1062873815020203
14. Marichev V. N., Bochkovskii D. A., The study of possibilities of lidar measurements of the Earth atmosphere temperature from the space, Optika atmosfery i okeana, 2014, vol. 27, no. 05, pp. 399–406. (In Russ.)
Review
For citations:
Privalov V.E., Cherbachi Y.V., Shemanin V.G. Atmospheric transmission influence on the accuracy of lidar measurements of the Mie scattering power by aerosol particles. Izmeritel`naya Tekhnika. 2022;(1):30-34. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-1-30-34