

Diferential method for the formation of relative phase shifts between light beams in two-arm interferometer
https://doi.org/10.32446/0368-1025it.2023-3-21-27
Abstract
The possibility of improving technical means that make it possible to introduce phase shifts into light beams in the interferometer paths is considered. An optical-mechanical phase modulator in the form of a plane-parallel glass plate rotated around an axis lying in its plane was adopted as the initial version of these technical means. A differential method is proposed for the formation of relative phase shifts between beams in a two-arm interferometer. A variant of the modulator has been developed in the form of a pair of rigidly interconnected plates, the planes of which are initially rotated at a given angle. In this case, each of the parallel light beams in the interferometer passes through its own plate. It is shown that in this case a practically linear relationship is provided between the generated relative phase shift and the total angle of rotation of the plates. A variant of using a single plate as a modulator under the established conditions for the incidence of two beams propagating in different arms of the interferometer is considered. The operability of the proposed differential method for controlling the phase shift between light beams is confi rmed by the data of a test experiment. The results obtained will be useful in the development of special tools based on the method of digital speckle pattern interferometry for measurements of the displacement fields of deformable bodies
About the Author
I. N. OdintsevRussian Federation
Igor N. Odintsev
Moscow
References
1. Shchepinov V. P., Pisarev V. S., et. аl. Strain and stress analysis by holographic and speckle interferometry, Chichester, John Wiley & Sons Ltd., 1996. 483 p.
2. Razumovsky I. A. Interference-optical methods of solid mechanics. Berlin, Springer, 2011, 180 p. https://doi.org/10.1007/978-3-642-11222-5
3. Reid G. T. Optics and Lasers Engineering, 1986, vol. 7, no. 7, pp. 53–68. https://doi.org/10.1016/0143-8166(86)90034-5
4. Vlasov N. G., Shtan’ko A. E. Metod fazovyh shagov. In book Golografiya: teoreticheskie i prikladnye voprosy (Proceedings of the XXIII Shkoly-simpoziuma po kogerentnoj optike i golografii, Dolgoprudny (MR), Russia, 24–29 Jan 1994), eds. I. N. Companets, A. N. Malov. Moscow, Tiraspol, PGKU Publ., 1995, pp. 5–11 (In Russ)
5. Guzhov V. I., Pozdnyakov G. A., Serebryakova E. E. Obtaining phase difference by using the step-by-step phase shift method. Science Bulletin of the Novosibirsk State Technical University, 2019, no. 1(74), pp. 157–166 (In Russ.) https://doi.org/10.17212/1814-1196-2019-1-157-166
6. Thalmann R.,Dändliker R. Applied Optics, 1987, vol. 26, no. 10, pp. 1964–1971. https://doi.org/10.1364/AO.26.001964
7. Guzhov V. I., Kozachok A. G., Loparev E. G., Orlov M. G., Chernobrovin V. V. Holographic measuring system for determining a phase difference field through the insertion of a controlled phase shift. Optoelectronics, Instrumentation and Data Processing, 1986, vol. 22, no. 2, pp. 123–125.
8. Creath K. Applied Optics, 1985, vol. 24, no. 18, pp. 3053–3058. https://doi.org/10.1364/AO.24.003053
9. Kao C.-C., Yeh G.-B., Lee S.-S., Lee C.-K., Yang C.-S., Wu K.-C. Applied Optics, 2002, vol. 41, no. 1, pp. 46–54. https://doi.org/10.1364/AO.41.000046
10. Morimoto Y., Nomura T., Fujigaki M., Yoneyama S., Takahashi I. Experimental Mechanics, 2005, vol. 45, pp. 65–70. https://doi.org/10.1007/BF02428991
11. Guzhov V. I., Denezhkin E. N., Ilinykh S. P., Pozdnyakov G. A., Khaidukov D. S. Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 6, pp. 608–613. https://doi.org/10.3103/S8756699020060084
12. Rastogi P. K. Digital speckle pattern interferometry & Related techniques. New York, John Wiley & Sons, 2000, 384 p.
13. Antonov A. A. Welding International, 2014, vol. 28, no. 12, pp. 966–969. https://doi.org/10.1080/09507116.2014.884327
14. Aniskovich E. V., Moskvichev V. V., Makhutov N. A. Razumovskii I. A., Odintsev I. N., Apal’kov A. A., Plugatar’ T. P. Power Technology and Engineering, 2019, vol. 53, no 1, pp. 33–38. https://doi.org/10.1007/s10749-019-01030-y
15. Nakadate S. Applied Optics, 1986, vol. 25, no. 22, pp. 4162–4167. https://doi.org/10.1364/AO.25.004162
16. Guzhov V. I., Il’inyh S. P. Opticheskie izmereniya. Komp’yuternaya interferometriya. Moscow, Yurajt Publ., 2019. 258 p. (In Russ.)
17. Bruno L., Poggialini A., Felice G. Optics and Lasers in Engineering, 2007, vol. 45, no. 12, pp. 1148–1156. https://doi.org/10.1016/j.optlaseng.2007.06.004
18. Jaing C. C., Shie Y. L., Tang C. J., Liou Y. Y., Chang C.-M., Yang C.-R. Optical Review, 2009, vol. 16. pp. 170–172. https://doi.org/10.1007/s10043-009-0029-0
19. Ravindran S., Langoju R., Patil A., Rastogi P. Optics and Lasers in Engineering, 2007, vol. 45, no. 7, pp. 766–772. https://doi.org/10.1016/j.optlaseng.2007.01.001
20. Takahashi Y. Applied Mechanics and Materials, 2019, vol. 888, pp. 11–16. https://doi.org/10.4028/www.scientific.net/AMM.888.11
21. Kröger N., Schlobohm J., Pösch A., Reithmeier E. Applied Optics, 2017, vol. 56. no. 25, pp. 7299–7304. https://doi.org/10.1364/AO.56.007299
22. Shevkunov I., Petrov N. V. Journal of Imaging, 2022, vol. 8, no. 4, 87. https://doi.org/10.3390/jimaging8040087
Review
For citations:
Odintsev I.N. Diferential method for the formation of relative phase shifts between light beams in two-arm interferometer. Izmeritel`naya Tekhnika. 2023;(3):21-27. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-3-21-27