Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Diferential method for the formation of relative phase shifts between light beams in two-arm interferometer

https://doi.org/10.32446/0368-1025it.2023-3-21-27

Abstract

The possibility of improving technical means that make it possible to introduce phase shifts into light beams in the interferometer paths is considered. An optical-mechanical phase modulator in the form of a plane-parallel glass plate rotated around an axis lying in its plane was adopted as the initial version of these technical means. A differential method is proposed for the formation of relative phase shifts between beams in a two-arm interferometer. A variant of the modulator has been developed in the form of a pair of rigidly interconnected plates, the planes of which are initially rotated at a given angle. In this case, each of the parallel light beams in the interferometer passes through its own plate. It is shown that in this case a practically linear relationship is provided between the generated relative phase shift and the total angle of rotation of the plates. A variant of using a single plate as a modulator under the established conditions for the incidence of two beams propagating in different arms of the interferometer is considered. The operability of the proposed differential method for controlling the phase shift between light beams is confi rmed by the data of a test experiment. The results obtained will be useful in the development of special tools based on the method of digital speckle pattern interferometry for measurements of the displacement fields of deformable bodies

About the Author

I. N. Odintsev
Mechanical Engineering Research Institute of the Russian Academy of Sciences
Russian Federation

Igor N. Odintsev

Moscow



References

1. Shchepinov V. P., Pisarev V. S., et. аl. Strain and stress analysis by holographic and speckle interferometry, Chichester, John Wiley & Sons Ltd., 1996. 483 p.

2. Razumovsky I. A. Interference-optical methods of solid mechanics. Berlin, Springer, 2011, 180 p. https://doi.org/10.1007/978-3-642-11222-5

3. Reid G. T. Optics and Lasers Engineering, 1986, vol. 7, no. 7, pp. 53–68. https://doi.org/10.1016/0143-8166(86)90034-5

4. Vlasov N. G., Shtan’ko A. E. Metod fazovyh shagov. In book Golografiya: teoreticheskie i prikladnye voprosy (Proceedings of the XXIII Shkoly-simpoziuma po kogerentnoj optike i golografii, Dolgoprudny (MR), Russia, 24–29 Jan 1994), eds. I. N. Companets, A. N. Malov. Moscow, Tiraspol, PGKU Publ., 1995, pp. 5–11 (In Russ)

5. Guzhov V. I., Pozdnyakov G. A., Serebryakova E. E. Obtaining phase difference by using the step-by-step phase shift method. Science Bulletin of the Novosibirsk State Technical University, 2019, no. 1(74), pp. 157–166 (In Russ.) https://doi.org/10.17212/1814-1196-2019-1-157-166

6. Thalmann R.,Dändliker R. Applied Optics, 1987, vol. 26, no. 10, pp. 1964–1971. https://doi.org/10.1364/AO.26.001964

7. Guzhov V. I., Kozachok A. G., Loparev E. G., Orlov M. G., Chernobrovin V. V. Holographic measuring system for determining a phase difference field through the insertion of a controlled phase shift. Optoelectronics, Instrumentation and Data Processing, 1986, vol. 22, no. 2, pp. 123–125.

8. Creath K. Applied Optics, 1985, vol. 24, no. 18, pp. 3053–3058. https://doi.org/10.1364/AO.24.003053

9. Kao C.-C., Yeh G.-B., Lee S.-S., Lee C.-K., Yang C.-S., Wu K.-C. Applied Optics, 2002, vol. 41, no. 1, pp. 46–54. https://doi.org/10.1364/AO.41.000046

10. Morimoto Y., Nomura T., Fujigaki M., Yoneyama S., Takahashi I. Experimental Mechanics, 2005, vol. 45, pp. 65–70. https://doi.org/10.1007/BF02428991

11. Guzhov V. I., Denezhkin E. N., Ilinykh S. P., Pozdnyakov G. A., Khaidukov D. S. Optoelectronics, Instrumentation and Data Processing, 2020, vol. 56, no. 6, pp. 608–613. https://doi.org/10.3103/S8756699020060084

12. Rastogi P. K. Digital speckle pattern interferometry & Related techniques. New York, John Wiley & Sons, 2000, 384 p.

13. Antonov A. A. Welding International, 2014, vol. 28, no. 12, pp. 966–969. https://doi.org/10.1080/09507116.2014.884327

14. Aniskovich E. V., Moskvichev V. V., Makhutov N. A. Razumovskii I. A., Odintsev I. N., Apal’kov A. A., Plugatar’ T. P. Power Technology and Engineering, 2019, vol. 53, no 1, pp. 33–38. https://doi.org/10.1007/s10749-019-01030-y

15. Nakadate S. Applied Optics, 1986, vol. 25, no. 22, pp. 4162–4167. https://doi.org/10.1364/AO.25.004162

16. Guzhov V. I., Il’inyh S. P. Opticheskie izmereniya. Komp’yuternaya interferometriya. Moscow, Yurajt Publ., 2019. 258 p. (In Russ.)

17. Bruno L., Poggialini A., Felice G. Optics and Lasers in Engineering, 2007, vol. 45, no. 12, pp. 1148–1156. https://doi.org/10.1016/j.optlaseng.2007.06.004

18. Jaing C. C., Shie Y. L., Tang C. J., Liou Y. Y., Chang C.-M., Yang C.-R. Optical Review, 2009, vol. 16. pp. 170–172. https://doi.org/10.1007/s10043-009-0029-0

19. Ravindran S., Langoju R., Patil A., Rastogi P. Optics and Lasers in Engineering, 2007, vol. 45, no. 7, pp. 766–772. https://doi.org/10.1016/j.optlaseng.2007.01.001

20. Takahashi Y. Applied Mechanics and Materials, 2019, vol. 888, pp. 11–16. https://doi.org/10.4028/www.scientific.net/AMM.888.11

21. Kröger N., Schlobohm J., Pösch A., Reithmeier E. Applied Optics, 2017, vol. 56. no. 25, pp. 7299–7304. https://doi.org/10.1364/AO.56.007299

22. Shevkunov I., Petrov N. V. Journal of Imaging, 2022, vol. 8, no. 4, 87. https://doi.org/10.3390/jimaging8040087


Review

For citations:


Odintsev I.N. Diferential method for the formation of relative phase shifts between light beams in two-arm interferometer. Izmeritel`naya Tekhnika. 2023;(3):21-27. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-3-21-27

Views: 160


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)