

Building a model of the Earth's gravitational field within the Caribbean Sea based on satellite altimetry data
https://doi.org/10.32446/0368-1025it.2023-3-16-20
Abstract
Methods for processing measurement information collected over the past 30 years by altimetry spacecraft with various measurement technologies and orbit characteristics are systematized and described. The description and classification of measurement information files is given. Based on the removal-recovery method, a software package for determining the characteristics of the gravitational field and the figure of the Earth by satellite altimetry has been developed. On the example of a geologically complex and seismically active region (the Caribbean Sea), a model of the gravity field (gravity anomalies) was constructed and its accuracy characteristics were evaluated. The calculated standard deviation of gravity anomalies from the data of the EGM2008 global model does not exceed 4 mGal in the open sea and 14 mGal in the coastal zone, which corresponds to the international level. At the moment, a digital interactive gravity model of the Global Ocean is used to solve applied problems of geophysics and geology, in particular, to forecast oil and gas fields.
About the Authors
E. N. TsybaRussian Federation
Efim N. Tsyba
Mendeleevo, Moscow region
N. A. Vostrukhov
Russian Federation
Nikita А. Vostrukhov
Mendeleevo, Moscow region
References
1. Van-Sang Nguyen, Van-Tuyen Pham, Lam Van Nguyen, Ole Baltazar Andersen, Rene Forsberg, Dieu Tien Bui. Advances in Space Research, 2020, vol. 66, pp 505–519. https://doi.org/10.1016/j.asr.2020.04.051
2. Kane M. F., Godson, R. H. Chapter 18: A crust/mantle structural framework of the conterminous United States based on gravity and magnetic trends. In: L. C. Pakiser, Walter D. Mooney. Geophysical Framework of the Continental United States, Geological Society of America, vol. 172, 1989, pp. 383–403. https://doi.org/10.1130/MEM172-p383
3. Noréus J. P., Nyborg M. R., Hayling K. L. Journal of Applied Geophysics, 1997, vol. 37, pp 67–84. https://doi.org/10.1016/S0926-9851(97)00007-4
4. Bulychev A. A. Sovmestnoye ispol’zovaniye al’timetricheskikh, nabortnykh gravimetricheskikh i magnitnykh dannykh pri izuchenii tektonosfery Yuzhnogo okeana, Extented abstract of doctoral’s dissertation (Moscow, 2000). (In Russ.)
5. Sandwell D. T., Smith W. H. F. Marine gravity anomaly from Geosat and ERS-1 Satellite altimetry. Journal of Geophysical Research, 1997, vol. 102, no. B5, pp. 10039–10054.
6. Yale M. M., Sandwell D. T. Geophysics, 1999, vol. 64, no. 6, pp. 1748–1755. https://doi.org/10.1190/1.1444680
7. Sandwell D. T., Smith W. H., Gille S. T., Jayne S. R., Soofi K. A., Coakley B. Internal Geophysics (Space Physics), 2001, vol. 338, pp. 1049–1062. https://doi.org/10.1016/j.crte.2006.05.014
8. Sandwell D. T., Müller R. D., Smith W. H. F., Garcia E., Francis, R. Science, 2014, vol. 346, no. 6205, pp. 65–67. https://doi.org/10.1126/science.1258213
9. Tsyba E. N., Volkova O. A., Pasynok S. L., Seravina T. V., Proc. IPA RAN, 2020, no. 53. pp. 54–59. (In Russ.)
10. Ablain M. Error Characterization Report: Altimetry Measurements Errors at Climate Scales. Ref. CLS-DOS-NT-13-100, ESA, 2016, 35 p., available at: https://climate.esa.int/media/documents/SLCCI-ErrorReport-030-2-2.pdf (accessed: 25.11.2022).
11. Lavrova O. Yu., Kostyanoi A. G., Lebedev S. A. Complex Satellite Monitoring of the Russian Seas, Moscow, IKI RAN Publ, 2011, 472 p. (In Russ.)
12. Andersen O. B. Marine Gravity and Geoid from Satellite Altimetry. In: Sansò F., Sideris M. (eds), Geoid Determination. Lecture Notes in Earth System Sciences. 2013, vol. 110, pp. 401–451. https://doi.org/10.1007/978-3-540-74700-0_9
13. Garcia E. S., Sandwell D. T., Smith W. H. F. Geophysical Journal International, 2014, vol. 196, no. 3, pp. 1402–1422. https://doi.org/10.1093/gji/ggt469
14. Hwang C., Parsons B. Geophysical Journal International, 1996, vol. 125, no. 3, pp. 705–718. https://doi.org/10.1111/j.1365-246X.1996.tb06018.x
15. Per Knudsen. Geophysical Journal International, 1991, vol. 104, no. 2, pp. 307–317. https://doi.org/10.1111/j.1365-246X.1991.tb02513.x
16. Forsberg R., Bulletin géodésique, 1985, vol. 59, pp. 342–360. https://doi.org/10.1007/BF02521068
17. Childers V. A., McAdoo D. C., Brozena J. M., Laxon S. W. JGR Solid Earth, 2001, vol. 106, no. B5, pp. 8871–8886. https://doi.org/10.1029/2000JB900405
18. Olesen A. V., Andersen O. B., Tscherning C. C. Studia Geophysica et Geodaetica, 2002, vol. 46, pp. 387–394. https://doi.org/10.1023/A:1019577232253
19. Fedynskii V. V. Razvedochnaya geofi zika [Exploration geophysics]. Moscow, Nedra Publ., 1964, 672 p. (In Russ.)
20. Arkhangel’skii A. D. Geologiya i gravimetriya [Geology and gravimetry], Novosibirsk, ONTI NKTP SSSR Publ., 1 933, 112 p. (In Russ.)
Review
For citations:
Tsyba E.N., Vostrukhov N.A. Building a model of the Earth's gravitational field within the Caribbean Sea based on satellite altimetry data. Izmeritel`naya Tekhnika. 2023;(3):16-20. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-3-16-20