Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Cosmological distances scale. Part 15: cosmically jerk and the dipole of gravitational heterogeneity

https://doi.org/10.32446/0368-1025it.2023-3-10-15

Abstract

The central question of the cosmic shock in the series of articles “Cosmological Distance Scale” is considered: do the data for parametric identification of the Friedman-Robertson-Walker model in the form of a dependence of the photometric distance on the redshift of type Ia supernovae used in the work of the High-Z SN Search Team and Supernovae Cosmology Project allow us to consider the acceleration of the expansion of the Universe as the most plausible hypothesis on the criterion of the minimum error of inadequacy. The previously discovered discrepancies (changes in the structure and parameters of the systematic component of the model) and rank inversions of photometric distances of supernovae SN Ia for the systematic component of this model are analyzed. It is shown that the cause of these metric violations is the isotropy of the Friedman-Robertson-Walker model. In the anisotropic model of the cosmological distance scale, the disjunctions and rank inversions are associated with the orientation of the gravitational dipoles of the heterogeneity of the large-scale structure of the Universe. These dipoles represent diametrically opposite pairs of “super cluster galaxies – giant void” on the celestial sphere. Due to the size of only the super-void in the constellation Eridanus, comparable to the size of the observable part of the Universe, a colossal imbalance of the gravitational action of a massive super cluster of galaxies is created. This leads to disturbances in the form of disorders and rank inversions in isotropic Friedman-Robertson-Walker type models.

About the Author

S. F. Levin
Moscow Institute of Expertise and Testing
Russian Federation

Sergey F. Levin

Mоscow



References

1. Riess A. G. et al. Astronomical journal, 1998, vol. 116, pp. 1009–1038. https://doi.org/10.1086/300499

2. Riess A. G. et al. Astrophysical Journal, 2004 , vol. 607, рр. 665–687. https://doi.org/10.1086/383612

3. Riess A. G. et al. Astrophysical Journal, 2007, vol. 659, рр. 98–121. https://doi.org/10.1086/510378

4. Perlmutter S. et al. Astrophysical Journal, 1999, vol. 517, pp. 565–586. https://doi.org/10.1086/307221

5. Perlmutter S . Rev. Mod. Phys. 2012, vol. 84, 1127. https://doi.org/10.1103/REVMODPHYS.84.1127

6. Riess A. G. Rev. Mod. Phys. 2012, vol. 84, 1165. https://doi.org/10.1103/RevModPhys.84.1165

7. Levin S. F. Measurement Techniques, 2021, vol. 63, no. 11, pp. 849–855. https://doi.org/10.1007/s11018-021-01874-9

8. Mukhin Yu., Brun M. Tret’ya mirovaya nad Sahalinom, ili Kto sbil korejskij lajner? Moscow, Algoritm Publ., 2008. (In Russ.)

9. Levin S. F. Matematicheskaya teoriya izmeritel’nyh zadach: Prilozheniya. Katastrofi cheskij fenomen v kosmologii, Kontrol’no-izmeritel’nye pribory i sistemy, 2014, no. 4, pp. 35–38. (In Russ.)

10. Levin S. F. Measurement Techniques, 2017, vol. 60, no. 5, рр. 411–417. https://doi.org/10.1007/s11018-017-1211-6

11. Levin S. F. Measurement Techniques, 2018, vol. 61, no. 11, рр. 1057–1065. https://doi.org/10.1007/s11018-019-01549-6

12. Levin S. F. Measurement Techniques, 2019, vol. 62, no. 1, рр. 7–15. https://doi.org/10.1007/s11018-019-01578-1

13. Levin S. F. The scale of cosmological distances: oddities of anisotropy. Proceedings of the XVIII International Conference “Finsler generalizations of Relativity theory” (FERT-2022), November 25–26, 2022, Peoples’ Friendship University of Russia, Moscow, Russia, Moscow, 11th Format, 2022, pp. 27–34. (In Russ.)

14. Visser M. Classical and Quantum Gravity, 2004, vol. 21, pp. 1–13. https://doi.org/10.1088/0264-9381/21/11/006

15. Riess A. G. et al. Astrophysical Journal, 2016, vol. 826, 56. https://doi.org/10.3847/0004-637X/826/1/56

16. Levin S. F. Measurement Techniques, 2021, vol. 63, no. 10, pp. 780–797. https://doi.org/10.1007/s11018-021-01854-z

17. Wilkinson D. T., Partridge R. B. Nature, 1967, vol. 215, 719. https://doi.org/10.1038/215719a0

18. Lang K. R. Astrophysical formulae: A Compendium for the Physicist and Astrophysicist, Berlin, N.Y., Springer-Verlag, 1980, 783 p. https://doi.org/10.1007/978-3-662-21642-2

19. Smoot G. F., Gorenstein M. V., Muller R. A. Physical Review Letters, 1977, vol. 39, 898. https://doi.org/10.1103/PhysRevLett.39.898

20. Gorenstein M. V., Smoot G. F. Astrophysical Journal, 1981, vol. 244, pp. 361–381. https://doi.org/10.1017/S0074180900068716

21. Levin S. F. Anisotropy of red shift. Giperkomplexnye chisla v geomtrii i physike, 2011, vol. 8, no. 1(15), pp. 70–101. (In Russ.)

22. Karachentsev I. D., Makarov D. I. Galaxy Interactions in the Local Volume. In: Barnes J. E., Sanders D. B. (eds) Galaxy Interactions at Low and High Redshift. International Astronomical Union, 1999, vol. 186, Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4665-4_22

23. Levin S. F., Lisenkov A. N., Sen`ko O. V., Xarat`yan E. I. Sistema metrologicheskogo soprovozhdeniya staticheskih izmeritel`ny`xzadach “MMK-statM”. Rukovodstvopol`zovatelya, Moscow, Gosstandart RF, VC RAN Publ., 1998, 32 p. (In Russ.)

24. Levin S. F. Abstracts of Papers X Russian Gravitation Conference “Teoreticheskie i eksperimental’nye problemy obshchej teorii otnositel’nosti i gravitacii”, Moscow, RGO Publ., 1999, р. 245. (In Russ.)

25. Makarov D. I. Candidate’s dissertation Mathematics and Physics Sciences (N. Arkhyz, Special Astrophysical Observatory of the Russian Academy of Sciences, 2000). (In Russ.)

26. Kocevsky D., Rehbock K. X-rays reveal what makes the Milky Way move. https://doi.org/10.48550/arXiv.astro-ph/0510106

27. Cruz M., Cayón L., Martínez-González E., Vielva P., Jin J. The Non-Gaussian Cold spot in the 3-year WMAP data. https://doi.org/10.48550/arXiv.astro-ph/0603859

28. Levin S. F. On spatial anisotropy of red shift in spectrums of ungalaxy sources. Physical Interpretations of relativity Theory. Proc. of XV International Scientifi c Meeting PIRT-2009, Moscow, 6–9 July, 2009, Moscow, BMSTU, 2009, рр. 234–240. (In Russ.)

29. Levin S. F. Izmeritel’naya zadacha identifi kacij anisotropii krasnogo smeshcheniya. Metrologiya, 2010, no. 3, pp. 3–21. (In Russ)

30. Levin S. F. Identifi cation of red shift anisotropy on the basis of the exact decision of Mattig equation. Abstracts of reports VI International Meeting “Finsler Extensions of Relativity Theory”, Moscow, Fryazino, Russia, 1–7 November 2010, Moscow, BMSTU – RIHSGP, 2010.

31. Levin S. F. Photometric scale of cosmological distances: Anisotropy and nonlinearity, isotropy and zero-point. Physical Interpretation of Relativity Theory. Proceedings of International Meeting PIRT-2013, Moscow, 1–4 July 2013, Eds. M. C. Duffy et al. Moscow, BMSTU, 2013, рр. 210–219.

32. Planck Collaboration. Planck 2013 results. I. Overview of products and scientifi c results. arXiv:1303.5062v1 [astro-ph.CO].

33. Levin S. F. Measurement Techniques, 2014, vol. 57, no. 4, pp. 378–384. https://doi.org/10.1007/s11018-014-0464-6

34. Tully R. B., Courtois H., Hoffman Y., Pomarède D. Nature, 2014, vol. 513, nо. 7516, pр. 71–73. https://doi.org/10.1038/nature13674

35. Hoffman Y., Pomarède D., Tully R. B., Courtois H. The Dipole Repeller. https://doi.org/10.48550/arXiv.1702.02483

36. Courtois H. M. et al. Cosmicows-3: Cold Spot Repeller? https://doi.org/10.48550/arXiv.1708.07547

37. Colin J., Mohayaee R., Rameez M., Sarkar S. Astronomy & Astrophysics, 2019, vol. 631, L13, pр. 1–6. https://doi.org/10.1051/0004-6361/201936373

38. Levin S. F. Measurement Techniques, 2014, vol. 57, no. 2, pp. 117–124. https://doi.org/10.1007/s11018-014-0417-0


Review

For citations:


Levin S.F. Cosmological distances scale. Part 15: cosmically jerk and the dipole of gravitational heterogeneity. Izmeritel`naya Tekhnika. 2023;(3):10-15. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-3-10-15

Views: 176


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)