

The development of methods and instruments for thermal conductivity measurement of standard core samples for petrophysical studies
https://doi.org/10.32446/0368-1025it.2023-2-35-41
Abstract
The problem of obtaining qualitative data on the thermal conductivity of standard rock samples for petrophysical studies is considered. It is shown that the existing instruments for thermal conductivity measurement do not allow one to obtain reliable and accurate values of the thermal conductivity of small-sized rock samples. A laboratory installation for thermal conductivity measurement of standard rock samples with a diameter not less than 30 mm has been created. The installation was assembled and tested on small samples. Possible problems in the development, design and exploitation of the laboratory installation were analyzed. A software that allows automated collection and processing of the data has been developed. The key factors, negatively affecting the accuracy and reliability of thermal conductivity measurement results, are identified and excluded.
There were unshielded thermocouples, potential changes between the hot and cold junctions (due to uneven melting of the water-ice mixture in the Dewar vessel, where the cold junction is immersed), incorrectly selected dimensions and shape of the object of study and the nonequilibrium ratio of the heat input and dissipation. The installation was tested on samples of pure tin standard and brass LS59 with known thermal conductivity. The thermal conductivity of a small-sized rock sample was measured with an error within 5.6 %.
About the Authors
B. V. GrigorevRussian Federation
Boris V. Grigorev
Tyumen
S. G. Nikulin
Russian Federation
Sergei G. Nikulin
Tyumen
D. A. Vazhenin
Russian Federation
Denis A. Vazhenin
Tyumen
D. V. Vakhnina
Russian Federation
Daria V. Vakhnina
Tyumen
References
1. Kislicyn A. A. Osnovy teplofiziki: Lekcii i seminary [Fundamentals of thermal physics: Lectures and seminars]. Tyumen, Tyumen State University Publ., 2002, 152 p. (In Russ.)
2. Lipaev A. A., Minniahmetov R. G., Mannanov I. I., Mirsaetov O. M., Abasheev R. B. Laboratornaya ustanovka dlya issledovaniya teplovyh svojstv porod neftyanyh i bitumnyh mestorozhdenij. Vestnik Udmurtskogo universiteta. Serija Biologija. Nauki o Zemle, 2005, no. 11, pp. 211–220. (In Russ.)
3. S. V. Novikov. Teplovye svojstva terrigennyh kollektorov i nasyshhajushhih fljuidov, candidate’s dissertation in Technical Sciences (MGRI, Moscow, 2009). (In Russ.)
4. Yüksel N. In book Insulation Materials in Context of Sustainability. 2016, IntechOpen, pp. 113–140. http://doi.org/10.5772/64157
5. Anisimov M. V., Rekunov V. S. Eksperimental’noe opredelenie koefficienta teploprovodnosti sverhtonkih zhidkih kompozicionnyh teploizoliruyushchih pokrytij. Izvestija Tomskogo politehnicheskogo universiteta. Inzhiniring georesursov, 2015, vol. 326, no. 9, pp. 15–22. (In Russ.)
6. Sterligov V. V., Shadrintseva D. A. Influence оf structure оf thermal insulating materials оn the coefficient of thermal conductivity. Izvestiya. Ferrous Metallurgy, 2014, vol. 57, no. 2, pp. 30–33. (In Russ.) https://doi.org/10.17073/0368-0797-2014-2-30-33
7. Jurov V. M., Guchenko S. A., Laurinas V. Ch. Koefficient teploprovodnosti nanostruktur. Innovacionnaja nauka, 2019, no. 5, pp. 10–14. (In Russ.)
8. Sosnovskij A. G., Stoljarova N. I. Izmerenie temperatury [Temperature measurement]. Moscow, Publishing house of standards, 1970, 258 p. (In Russ.)
9. Avramenko V. G., Lebedev O. V., Budadin O. N., Abramova E. V. Correct way of the heat flux definition. Testing. Diagnostics, 2007, no. 8, pp. 23–27. (In Russ.)
10. Volkov D. P., Korablev V. A., Zarichnjak Ju. P. Metodicheskie ukazanija k laboratornym rabotam po kursu “Teplofizicheskie svojstva veshhestv” [Guidelines for laboratory work on the course “Thermophysical properties of substances”]. St. Petersburg, SPbGU ITMO Publ., 2006, 66 p. (In Russ.)
11. Korotkih A. G. Teploprovodnost’ materialov: uchebnoe posobie [Thermal conductivity of materials: tutorial], Tomsk, Tomsk Polytechnic University Publ., 2011, 97 p. (In Russ.)
12. Grigor’ev B. V., Nikulin S. G., Zajcev E. V. Osnovy matematicheskoj obrabotki rezul’tatov fiziko-tehnicheskih izmerenij [Fundamentals of mathematical processing of the results of physical and technical measurements]. Tyumen, Tyumen State University Publ., 2018, 32 p. (In Russ.)
Review
For citations:
Grigorev B.V., Nikulin S.G., Vazhenin D.A., Vakhnina D.V. The development of methods and instruments for thermal conductivity measurement of standard core samples for petrophysical studies. Izmeritel`naya Tekhnika. 2023;(2):35-41. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-2-35-41