Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

High-precision comparison of time scales over fiber optic lines using satellite modems with additional tone modulation

https://doi.org/10.32446/0368-1025it.2023-2-24-29

Abstract

The use of a new type of modems with pseudonoise coding and additional tone modulation designed to compare reference time scales over telecommunication geostationary satellites is considered. Experimental studies were carried out on the possibility of comparing time scales of hydrogen keepers from the State primary standard of unit of time, frequency and national time scale using these modems via an optical link. A fiber-optical lines of various lengths were used for a two-way signal transmission. The output radio-frequency signals of the modems connected to the optical transmitters at the ends of the fiber-optical lines were transmitted towards each other on an optical carrier with a wavelength of 1.55 μm. Demodulation of optical signals into the radio frequency range was carried out using optical receivers at the ends of fiber lines. The results of experimental evaluation of type A uncertainty by comparing time scales using fiber-optical lines with 50, 100, and 200 km of length are presented. For the 200 km line, the type A measurement uncertainty does not exceed 3 ps for one day of averaging interval. For the first time, it has been experimentally shown that the implementation of the method of time scales comparison using modems with pseudo-noise coding and additional tone modulation over 200 km of fiber line is possible without the intermediate optical amplifiers. The result opens up the prospect of creating cascaded systems for comparing time scales of remote standards via fiber-optic communication lines with a smaller number of intermediate optical amplifiers.

About the Authors

A. V. Naumov
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Andrey V. Naumov

Mendeleevo, Moscow region



R. I. Balaev
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Roman I. Balaev

Mendeleevo, Moscow region



A. N. Malimon
Russian Metrological Institute of Technical Physics and Radio Engineering Measurements
Russian Federation

Alexander N. Malimon

Mendeleevo, Moscow region



R. S. Kobyakov
JSC “Vremya-CH”
Russian Federation

Roman S. Kobyakov

Nizhny Novgorod



A. V. Zheglov
JSC “Vremya-CH”
Russian Federation

Alexander V. Zheglov

Nizhny Novgorod



References

1. Sutyrin D. V., Gribov A. Yu., Balaev R. I., Gorokhina A. A., Pal’chikov V. G., Malimon A. N., Slyusarev S. N. Quantum Electronics, 2022, vol. 52, no. 6, pp. 498–504. https://doi.org/10.1070/QEL18058

2. Recommendation ITU-R TF.1153-4 (08/2015). The operational use of two-way satellite time and frequency transfer employing pseudorandom noise codes URL: https://www.itu.int/dms_pubrec/itu-r/rec/tf/R-REC-TF.1153-4-201508-I!!PDF-R.pdf

3. Schafer W. Two-Way Time and Frequency Transfer via Satellite TWSTFT. 2013 Asia-Pacific Radio Science Conference Taipei, Taiwan, September 3–7, 2013.

4. Schaefer W., Pawlitzki A., Kuhn T. New trends in two-way time and frequency transfer via satellite. 31st Annual Precise Time and Time Interval Systems and Applications Meeting, Dana Point, California December 7–9, 1999, available at: https://www.timetech.de/fileadmin/Documents/new-trends-in-two-way-timeand-frequency.pdf (accessed: 11.01.2023).

5. Fujieda M., Gotoh T., Nakagawa F., Tabuchi R., Aida M., Amagai J. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Dec. 2012, vol. 59, no. 12, pp. 2625–2630. https://doi.org/10.1109/TUFFC.2012.2503

6. Fujieda M., Piester D., Gotoh T., Becker J., Aida M., Bauch A. Metrologia, 2014, vol. 51, no. 3, 253. https://doi.org/10.1088/0026-1394/51/3/253

7. Gotoh T., Amagai J., Hobiger T., Fujieda M., Aida M. CPEM 2010, Daejeon, Korea (South), 2010, pp. 460–461. https://doi.org/10.1109/CPEM.2010.5545320

8. Kobyakov R. S., Medvedev S. Y., Midhagin K. G., Naumov A. V., Blinov I. Y. Development of DPN modem with selectable carrier frequencies, first results of measurements. Al’manac of Modern Metrology, 2020, no. 2(22), pp. 73–82 (In Russ.)

9. Varakin L. E. Communication systems with noise-like signals. Moscow, Radio and Сommunication Publ., 1985, 384 p. (In Russ.)

10. SATRE 10139 Datasheet, available at: https://www.yumpu.com/en/document/view/6665851/satre-satellite-time-andranging-equipment-timetech-gmbh (accessed: 11.01.2023).

11. Gotoh T., Fujieda M., Amagai J., Aida M., Tabuchi R., Maeno M., Hanado Y. TWSTFT Experiments using Carrier Phase and DPN Signals. 2013 Asia-Pacific Radio Science Conference, 2013.

12. Naumov A. V., Balaev R. I., Malimon A. N., Fedorova D. M. Measurement Techniques, 2019, vol. 61, pp. 1009–1017. https://doi.org/10.1007/s11018-019-01541-0

13. Lopez O., Kanj A., Pottie P., Rovera D., Achkar J., Chardonnet C., Amy-Klein A., Santarelli G. Applied Physics B, 2013, vol. 110, pp. 3–6. https://doi.org/10.1007/s00340-012-5241-0

14. Piester D., Fujieda M., Rost M., Bauch A. Proc. 41st Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 16–19 Nov. 2009, Santa Ana Pueblo, New Mexico, USA. https://doi.org/10.48550/arXiv.1001.5406

15. Rost M., Piester D., Yang W., Feldmann T., Wübbena T., Bauch A. Metrologia, 2012, vol. 49, no. 6, 772. https://doi.org/10.1088/0026-1394/49/6/772

16. Wen-Hung Tseng, Shinn-Yan Lin. NCSLI Measure: J. Meas. Sci. 2013, vol. 8, no. 2, pp. 70–77. https://doi.org/10.1080/19315775.2013.11721643


Review

For citations:


Naumov A.V., Balaev R.I., Malimon A.N., Kobyakov R.S., Zheglov A.V. High-precision comparison of time scales over fiber optic lines using satellite modems with additional tone modulation. Izmeritel`naya Tekhnika. 2023;(2):24-29. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-2-24-29

Views: 196


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)