

Cosmological distances scale. Part 14: “Hubble bubble” and the gravitational dipole
https://doi.org/10.32446/0368-1025it.2023-2-4-11
Abstract
In this article, on the basis of astronomical discoveries over the past 25 years, the possible causes of the phenomenon that is perceived as the “acceleration of the expansion of the Universe” are considered. In 1998, in order to confirm the discovery of the “acceleration of the expansion of the Universe”, the specialists of the High-Z SN Search Team tested and rejected the hypothesis about the influence of a local void – the “Hubble bubble”, which was considered an alternative to the positive cosmological constant, based on data on 44 supernovae of type SN Ia. Also in 1998 the author and specialists of the Computing Center of the Russian Academy of Sciences, during the testing of the multidimensional statistical analysis program “MMK-stat M”, according to standard reference data, a divergent dipole anisotropy of the redshift of 383 quasars and radio galaxies along the axis “Virgo – Leo ↔ Eridanus – Aquarius” was detected. In 2007, the problems of anisotropy attracted the attention of cosmologists. In 2016, groups of specialists from the High-Z SN Search Team and the Carnegie-Chicago Hubble program began a discussion about the impasse in cosmology. In the course of additional analysis, it is shown that the redshift dipole anisotropy of not only radio galaxies, but also supernovae of type SN Ia with respect to the quasar anisotropy dipole has an inverse orientation.
About the Author
S. F. LevinRussian Federation
Sergey F. Levin
Moscow
References
1. Levin S. F. Measurement Techniques, 2021, vol. 63, no. 10, pp. 780–797. https://doi.org/10.1007/s11018-021-01854-z
2. Bachcall N. A. Hubble’s Law and the expanding universe. Proceedings National Academy Science USA, 2015, vol. 112, рp. 3173–3175. https://doi.org/10.1073/pnas.1424299112
3. Planck Collaboration. Planck intermediate results. XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth. arXiv:1605. 02985v2 [astro-ph.CO] (26 May 2016).
4. Riess A. G. et al. The Astrophysical Journal, vol. 826, no. 1, 56. https://doi.org/10.3847/0004-637X/826/1/56
5. Visser M. Class. Quantum Grav. 2004, vol. 21, no. 11, 2603. https://doi.org/10.1088/0264-9381/21/11/006
6. Riess A. G. et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astronomical journal, 1998, vol. 116, pp. 1009–1038.
7. Sazhin M. V. Phys. Usp. 2004, vol. 47, pp. 187–194. https://doi.org/10.1070/PU2004v047n02ABEH001630
8. Perlmutter S. et al. Measurements of Ω and Λ from 42 high-red shift supernovae. Astrophysical Journal, 1999, vol. 517, pp. 565–586.
9. Beaton R. L., Freedman W. L., Madore B. F. et al. Astrophysical Journal, 2016, vol. 832, no. 2, 210. https://doi.org/10.3847/0004-637X/832/2/210
10. Freedman W. L., https://doi.org/10.48550/arXiv.1706.02739 (13 Jul 2017).
11. Riess A. et al. The Astrophysical Journal, 2019, vol. 876, no. 1, 85. https://doi.org/10.3847/1538-4357/ab1422
12. Elcio A. et al. Journal of High Energy Astrophysics, 2022, vol. 34, pр. 49–211. https://doi.org/10.1016/j.jheap.2022.04.002
13. Conley A., Carlberg R. G., Guy J., Howell D. A., Jha S., Riess A. G., Sullivan M. Astrophysical Journal, 2007, vol. 664, no. 1, рр. L13–L16. https://doi.org/10.1086/520625
14. Zehavi I., Riess A. G., Kirshner R. P., Dekel A. Astrophysical Journal, 1998, vol. 503(2), 483. https://doi.org/10.1086/306015
15. Levin S. F. Measurement Techniques, 2016, vol. 59, no. 8, pp. 791–802. https://doi.org/10.1007/s11018-016-1047-5
16. Kogut A. et al. Astrophysical Journal, 1993, vol. 419, pp. 1–6. https://doi.org/10.1086/173453
17. Wilkinson D. T., Partridge R. B. Nature, 1967, vol. 215, 719. https://doi.org/10.1038/215719a0
18. Kirshner R. P., Oemler A. Jr., Schechter P. L., Shectman S. A. Astrophysical Journal, 1987, vol. 314, рp. 493–506. https://doi.org/10.1086/165080
19. Aldering G. Filling the void – understanding the formation of the Bootes void in intergalactic space, Brief Article. Discover magazine, 1995, available at: htpp://findarticles.com/p/articles/mi_m1511/is_n8_v16/ai_17253874 (accessed: 11.01.2023).
20. Karachentsev I. D., Makarov D. I. Galaxy Interactions in the Local Volume. In: Barnes J. E., Sanders D. B. (eds), Galaxy Interactions at Low and High Redshift. International Astronomical Union, 1999, vol. 186. https://doi.org/10.1007/978-94-011-4665-4_22
21. Levin S. F., Lisenkov A. N., Sen`ko O. V., Xarat`yan E. I. Sistema metrologicheskogo soprovozhdeniya staticheskix izmeritel`ny`x zadach “MMK-stat M”. Rukovodstvo pol`zovatelya. Moscow, Gosstandart RF, VC RAN Publ., 1998, 32 p. (In Russ.)
22. Lang K. R. Astrophysical formulae: A Compendium for the Physicist and Astrophysicist. Berlin, N.Y., Springer-Verlag, 1980, 783 p. https://doi.org/10.1007/978-3-662-21642-2
23. Levin S. F. Abstracts of Papers X Russian Gravitation Conference “Teoreticheskie i eksperimental’nye problemy obshchej teorii otnositel’nosti i gravitacii”. Moscow, RGO Publ., 1999, р. 245 (In Russ.)
24. Levin S. F. On spatial anisotropy of redshift in spectrums of extragalactic sources, Physical Interpretations of Relativity Theory: Proceedings of XV International Meeting, Moscow, 6–9 July 2009, eds. M. C. Duffy, V. O. Gladyshev, A. N. Morozov, P. Rovlands, Moscow, Liverpool, Sunderland, BMSTU, 2009, pp. 234–240.
25. Levin S. F. Izmeritel’naya Tekhnika, 2022, nо. 10, рр. 11–18. (In Russ.) https://doi.org/10.32446/0368-1025it.2022-10-11-18
26. Levin S. F. Measurement Techniques, 2021, vol. 64, no. 4, pp. 273–281. https://doi.org/10.1007/s11018-021-01929-x
27. Levin S. F. Measurement Techniques, 2021, vol. 63, no. 11, pp. 849–855. https://doi.org/10.1007/s11018-021-01874-9
28. Levin S. F. Matematicheskaya teoriya izmeritel’nyh zadach: Prilozheniya. Kalibrovka kosmicheskaya i zemnaya – metrologicheskij i nauchnyj tupik? Kontrol’no-izmeritel’nye pribory i sistemy, 2018, no. 2, pp. 35–38. (In Russ.)
29. Levin S. F. Izmeritel’naya zadacha identifikacij anisotropii krasnogo smeshcheniya. Metrologiya, 2010, no. 3, pp. 3–21. (In Russ)
30. Levin S. F. Measurement Techniques, 2013, vol. 56, no. 3, pp. 217–222. https://doi.org/10.1007/s11018-013-0182-5
31. Levin S. F. Measurement Techniques, 2014, vol. 57, no. 4, pp. 378–384. https://doi.org/10.1007/s11018-014-0464-6
32. Levin S. F. Measurement Techniques, 2017, vol. 60, no. 5, рр. 411–417. https://doi.org/10.1007/s11018-017-1211-6
33. Hoffman Y., Pomarède D., Tully R. B., Courtois H. The Dipole Repeller, arXiv:1702.02483v1 [astro-ph.CO] (8 Feb 2017).
34. Proust D. et al. The Shapley Supercluster: the Largest Matter Concentration in the Local Universe. Reports from Observers. The Messenger, 2006, 124, pp. 30–31, available at: https://www.eso.org/sci/publications/mes-senger/archive/no.124-jun06/messenger-no124-30-31.pdf (accessed: 25.01.2023).
35. What Is The Great Attractor? Universe Today, 14 Jul 2014, available at: https://www.universetoday.com/113150/what-is-thegreat-attractor/ (accessed: 11.01.2023).
36. Cruz M., Cayón L., Martínez-González E., Vielva P., Jin J. Astrophysical Journal, 2007, vol. 655, pр. 11–20. https://doi.org/10.1086/509703
37. Schwarz D. J., Weinhorst B. Astronomy & Astrophysics, 2007, vol. 474, no. 3, pр. 717–729. https://doi.org/10.1051/0004-6361:20077998
38. McClure M. L., Dyer C. C. New Astronomy, 2007, vol. 12(7), pр. 533–543. https://doi.org/10.1016/j.newast.2007.03.005
39. Horváth I., Bagoly Z., Hakkila J., Tóth L. V. Astronomy & Astrophysics, 2015, vol. 8, no. 584. https://doi.org/10.1051/0004-6361/201424829
40. Tully R. B., Courtois H., Hoffman Y., Pomarède D. Nature, 2014, vol. 513, 7516. https://doi.org/10.1038/nature13674
41. Levin S. F. Identification of interpreting models in General Relativity and Cosmology. Physical Interpretation of Relativity Theory: Procee-dings of International Scientific Meeting PIRT2003, Moscow, 30 June – 03 July, 2003, Moscow, Liverpool, Sunderland, Coda, 2003, рр. 72–81.
42. Feldman G., Cousins R. Physical Review D, 1998, vol. 57, no. 7, pр. 3873–3889. https://doi.org/10.1103/PhysRevD.57.3873
43. Rosi G., Sorrentino F., Cacciapuoti L. et al. Nature, 2014, vol. 510, pр. 518–521. https://doi.org/10.1038/nature13433
44. Quinn T., Parks H., Speake C., Davis R. Physical Review Letters, 2013, vol. 111, iss. 10, 101102. https://doi.org/10.1103/PhysRevLett.111.101102
45. Levin S. F. Measurement Techniques, 2019, vol. 62, no. 1, рр. 7–15. https://doi.org/10.1007/s11018-019-01578-1
46. Levin S. F. Phys. Atom. Nucl., 2015, vol. 78, no. 13, pp. 1528–1533. https://doi.org/10.1134/S1063778815130190
47. Tsvetkov D. Yu., Pavlyuk N. N., Bartunov O. S., Pskovskii Yu. P. Supernovae Catalogue, Moscow, State Astronomical Sternberg Institute, 2005, available at: www.astronet.ru/db/sn/catalog.html (accessed: 11.01.2023).
48. Vuchkov I., Boyadzhieva L., Solakov E. Prikladnoj linejny`j regressionny`j analiz, Moscow, Finansy i statistika Publ., 1987, 239 p. (In Russ.)
49. Levin S. F. Measurement Techniques, 2021, vol. 63, no. 11, pp. 940–949. https://doi.org/10.1007/s11018-021-01876-7
50. Smoot J. F. Nobel lecture, Stockholm, December 8, 2006. Rev. Mod. Phys., 2007, vol. 79, 1349. https://doi.org/10.1103/RevModPhys.79.1349
Review
For citations:
Levin S.F. Cosmological distances scale. Part 14: “Hubble bubble” and the gravitational dipole. Izmeritel`naya Tekhnika. 2023;(2):4-11. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-2-4-11