Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Measurement of the thermal diffusivity of optical materials and products by a new thermographic express method that does not require cutting samples from bulk

https://doi.org/10.32446/0368-1025it.2023-1-36-43

Abstract

Thermal diffusivity a and thermal conductivity λ are important for many building, structural and functional material applications. They determine the intensity of heat transfer, the quality of thermal insulation, the rate of heating / cooling, reaching a stationary mode, and the efficiency of power equipment. In laser technology, the radiation strength of the optical components of the system depends upon them, and in laser technologies with material removal they determine the speed and quality of processing. Most methods for measuring a and λ in solid materials require cutting out samples of a certain geometry, which makes them unsuitable for testing finished products. The paper proposes and describes an express method for determining a and λ in translucent materials, which does not require cutting a sample from a controlled object. It consists in the analysis of a non-stationary temperature field on the surface of the test object using a high-speed thermal imaging camera. The unsteady heating spot was created by a focused laser beam. It was switched on abruptly and operated in the mode of continuous irradiation with a constant intensity during the entire time of measurements. Heat propagated from this spot to the periphery, creating a non-stationary temperature field containing information about a and λ. The a value was extracted from the primary data using original algorithms and software. A thermal imager, as a recorder of a dynamic temperature field, provides a number of advantages – non-contact, high speed and a large amount of information (each of the many hundreds of thousands of pixels of a professional thermal imager matrix is a temperature sensor in a small surface area). Measurements of a and λ in semitransparent materials of laser optics have their own specifics. The low radiation absorption coefficient and the possible curvature of the surface (for example, in lenses) require special measures, which are described in the article. Due to the large amount of information contained in the dynamic patterns of the thermal field and the possibility of averaging over a large data array, the RMS of the thermal diffusivity measurement does not exceed 2 %.

About the Authors

Yu. I. Golovin
Derzhavin Tambov State University;
Russian Federation

Yuri I. Golovin

Tambov

Moscow



A. A. Samodurov
Derzhavin Tambov State University
Russian Federation

Alexander A. Samodurov

Tambov



D. Yu. Golovin
Derzhavin Tambov State University
Russian Federation

Dmitri Yu. Golovin

Tambov



A. I. Tyurin
Derzhavin Tambov State University
Russian Federation

Alexander I. Tyurin

Tambov



A. G. Divin
Tambov State Technical University
Russian Federation

Alexander G. Divin

Tambov



Yu. A. Zakharov
Tambov State Technical University
Russian Federation

Yuri А. Zakharov

Tambov



References

1. Platunov E. S., Baranov V. V., Buravoy S. E., Kurepin V. V. Teplofizicheskie izmereniya. St. Petersburg, BIONT Publ., 2010, 737 p. (In Russ)]

2. Vavilov V. P. Infrakrasnaya termografiya i teplovoj kontrol’. Moscow, Spektr Publ., 2013, 544 p. (In Russ)]

3. Golovin D. Yu., Tyurin A. I., Samodurov A. A., Divin A. G., Golovin Yu. I. Termograficheskie metody nerazrushayushchego ekspress-kontrolya. Moscow, Tekhnosfera Publ., 2018, 214 p. (In Russ.)]

4. Grigoriants A. G. Osnovi lasernoy obrabotki materialov. Moscow, Mashinostroenie Publ., 1989, 304 p. (In Russ.)]

5. Manenkov A. A., Prokhorov A. M. Sov. Phys. Usp. 1986, vol. 29, pp. 104–122. https://doi.org/10.1070/PU1986v029n01ABEH003117 ]

6. Papernov S. Defect induced damage, Ch. 3 in book: Laser-induced damage in optical materials (Ed. Ristau D.). CRC Press, 2015, pp. 25–73.

7. Klein D., Eisfeld E., Roth J. J. Phys. D: Appl. Phys. 2021, vol. 54, 015103. https://doi.org/10.1088/1361-6463/abb38e

8. Brown A., Bernot D., Ogloza A., Olson K., Thomas J., Talghader J. Scientific Reports. 2019, no. 9, 635. https://doi.org/10.1038/s41598-018-37337-5

9. Chen M., Ding W., Cheng J., Yang H., Liu Q. Applied Science. 2020, no. 10, 6642. https://doi.org/10.3390/app10196642

10. Femtosecond Laser Micromachining. Photonic and Microfluidic Devices in Transparent Materials (eds. Osellame R., Cerullo G., Ramponi R.). Berlin-Heidelberg, Springer-Verlag, 2012, 486 p. https://doi.org/10.1007/978-3-642-23366-1

11. Sima F., Sugioka K., Va’ zquez R. M., Osellame R., Kelemen L., Ormos P. Nanophotonics. 2018, vol. 7, no. 3, pp. 613–634. https://doi.org/0.1515/nanoph-2017-0097

12. Parker W. J., Jenkins R. J., Butler C. P. Abbott G. L. Flash Method of Determining Thermal Diffusivity, Heat Capacity and Thermal Conductivity. J. Applied Physics. 1961, vol. 32, no. 9, pp. 1679–1684.

13. Cernuschi F., Bison P., Figari A., Marinetti S., Grinzato E. Int. J. Thermophysics. 2004, vol. 25, no. 2, pp. 439–457. https://doi.org/10.1023/B:IJOT.0000028480.27206.cb

14. Vozar L., Hohenauer W. High Temp.-High Press.

15. /2004, vol. 35/36, pp. 253–264. https://doi.org/10.1068/htjr119

16. Dong H., Zheng B., Chen F. Infrared Physics & Technology. 2015, vol. 73, pp. 130–140. https://doi.org/10.1016/j.infrared.2015.09.021

17. Kruczek T., Adamczyk W. P., Bialecki R. A. Int. J. Thermophys. 2013, vol. 34, pp. 467–485. https://doi.org/10.1007/s10765-013-1413-3

18. McMasters R. L., Dinwiddie R. B. J. Thermophys. and Heat Transfer. 2014, vol. 28, no. 3, pp. 518–523. https://doi.org/10.2514/1.T4189

19. Adamczyk W., Ostrowski Z., Ryfa A. Measurement. 2020, vol. 165, 108078. https://doi.org/10.1016/j.measurement.2020.108078

20. Wang L., Gandorfer M., Selvam T., Schwieger W. Materials Letters. 2018, vol. 221, pp. 322–325. https://doi.org/10.1016/j.matlet.2018.03.157

21. Coquard R., Panel B. Int. J. Thermal Sci. 2009, vol. 48, pp. 747–760. https://doi.org/10.1016/j.ijthermalsci.2008.06.005

22. Salazar A., Mendioroz A., Apiñaniz E., Pradere C., Noël F., Batsale J.-C. Meas. Sci. Technology. 2014, vol. 25, 035604. https://doi.org/10.1088/0957-0233/25/3/035604

23. Pech-May N. W., Mendioroz A., Salazar A. Review of Scientific Instruments. 2014, vol. 85, pp. 104902-1–104902-6. https://doi.org/10.1063/1.4897619

24. Graham S., McDowell D., Dinwiddie R. In-Plane Thermal Diffusivity Measurements of Orthotropic Materials. Thermal Conductivity. 1999, vol. 24, pp. 241–252.

25. Cernuschi F., Russo A., Lorenzoni L., Figari A. Rev. Sci. Instrum. 2001, vol. 72, no. 10, pp. 3988–3995. https://doi.org/10.1063/1.1400151

26. Murphy F., Kehoe T., Pietralla M., Winfield R., Floyd L. International Journal of Heat and Mass Transfer. 2005, vol. 48, pp. 1395–1402. https://doi.org/10.1016/j.ijheatmasstransfer.2004.09.046

27. Kim S. W., Kim J. C., Lee S. H. International Journal of Heat and Mass Transfer. 2006, vol. 49, iss. 3-4, pp. 611–616. https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.050

28. Kehoe T., Murphy F., Kelly P. A. Int. J. Thermophys. 2009, vol. 30, pp. 987–1000. https://doi.org/10.1007/s10765-009-0574-6

29. Roche J. M., Balageas D. L. Quantitative InfraRed Thermography Journal. 2015, vol. 12, no. 1, pp. 1–23. https://doi.org/10.1080/17686733.2014.996341

30. Almond D. P., Angioni S. L., Pickering S. G. NDT&E International. 2017, vol. 87, pp. 7–14. https://doi.org/10.1016/j.ndteint.2017.01.003

31. Palumbo D., Cavallo P., Galietti U. NDT&E International. 2019, vol. 102, pp. 254–263. https://doi.org/10.1016/j.ndteint.2018.12.011

32. Ciampa F., Mahmoodi P., Pinto F., Meo M. Sensors. 2018, vol. 18, iss. 2, 609. https://doi.org/10.3390/s18020609

33. Hammerschmidt U., Hameury J., Strnad R., Turzó-Andras E., Wu J. It. J. Thermophys. 2015, vol. 36, pp. 1530–1544. https://doi.org/10.1007/s10765-015-1863-x

34. Golovin D. Yu., Divin A. G., Samodurov A. A., Tyurin A. I., Golovin Yu. I. Temperature Diffusivity Measurement and Nondestructive Testing Requiring No Extensive Sample Preparation and Using Stepwise Point Heating and IR Thermography, Chapter 7, in Failure Analysis. InTechOpen, London, UK, 2019, pp. 125–150. https://doi.org/10.5772/intechopen.88302

35. Golovin D. Y., Divin A. G., Samodurov A. A. et al. Measurement Techniques. 2019, vol. 62, no. 8, pp. 714–721. https://doi.org/10.1007/s11018-019-01684-0 ]

36. Carslaw H. C., Jaeger J. C. Conduction of Heat in Solid. Oxford, Oxford University Press, 1959.


Review

For citations:


Golovin Yu.I., Samodurov A.A., Golovin D.Yu., Tyurin A.I., Divin A.G., Zakharov Yu.A. Measurement of the thermal diffusivity of optical materials and products by a new thermographic express method that does not require cutting samples from bulk. Izmeritel`naya Tekhnika. 2023;(1):36-43. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-1-36-43

Views: 210


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)