

Research on a watt balance experimental model based on a monolithic weighing converter
https://doi.org/10.32446/0368-1025it.2023-1-31-35
Abstract
This research describes the main systems and nodes of the watt balance experimental model created at the D. I. Mendeleev Institute for Metrology. It presents the results of studies of metrological characteristics of the watt balance model arrangement component part that operate on the principle of electromagnetic force compensation with a monolithic weight converter and a lower suspension. The studies were conducted with the use of standards traceable to the state primary standard of the unit of mass – kilogram. The research provides the information on the joint efforts of national metrological institutes aimed at the gradual spread of the unit of mass traceable to the fundamental physical constant – Planck's constant, the fixation of the numerical value of which was adopted at the 26th General Conference on Weights and Measures in Paris on May 20, 2019. Here the necessity of carrying out work to maintain the equivalence of the national standard of the unit of mass to the best national standards of other countries is reflected, because it is also the required factor for international recognition of the measuring capabilities of the metrological institutes of Russian Federation. The findings of the metrological characteristics of the watt balance experimental model studies showed potential possibility of using the design solutions applied in this experimental model for creating the measurement standard in the Russian Federation to implement a new definition of the kilogram.
About the Authors
Yu. I. KamenskihRussian Federation
Yuriy I. Kamenskih
St. Petersburg
S. V. Medvedevskih
Russian Federation
Sergej V. Medvedevskih
St. Petersburg
I. Y. Shmigelskiy
Russian Federation
Ilya Y. Shmigelskiy
St. Petersburg
References
1. Chernyshenko A. A. “Standard on the table” – a new reality in the context of global transformations of the International System of Units. LETI Transactions on Electrical Engineering & Computer Science. 2022, vol. 15, no. 2, pp. 5–22. (In Russ.)]
2. Becker P., Bettin H., Danzebrink H-U., Glaeser M., Kuetgens U., Nicolaus A., Schiel D., de Bi`evre P., Valkiers S., Taylor P. Metrologia. 2003, vol. 40, no. 5, pp. 271–287. https://doi.org/10.1088/0026-1394/40/5/010
3. Cladé P., Biraben F., Julien L., Nez F., Guelati-Khelifa S. Metrologia. 2016, vol. 53, no. 5, А75. https://doi.org/10.1088/0026-1394/53/5/A75
4. Kibble B. P., Robinson I. A., Bellis J. H. Conference on Precision Electromagnetic Measurements. 1990, pp. 178–179. https://doi.org/10.1109/CPEM.1990.109978
5. Glaser M., Borys M. Reports on Progress in Physics. 2009, vol. 72, no. 12, 126101. https://doi.org/https://doi.org/10.1088/0034-4885/72/12/126101
6. Stock M., Conceição P., Fang H., et al. Metrologia. 2020, vol. 57, no. 1A, 07030. https://doi.org/10.1088/0026-1394/57/1A/07030
7. Kibble B. P., Robinson I. A. Metrologia. 2014, vol. 51(2), S132. https://doi.org/10.1088/0026-1394/51/2/S132
8. Schlamminger S., Haddad D. Comptes Rendus Physique. 2019, vol. 20, no.1-2, pp. 55–63. https://doi.org/10.1016/j.crhy.2018.11.006
9. Rothleitner C., et al. First Results Using the Planck-Balance. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), 2018, pp. 1–2. https://doi.org/10.1109/CPEM.2018.8500904
10. Robinson I. A., Berry J., Bull C., Davidson S., Jarvis C., Lovelock P., Lucas C., Urquhart J., Webster E., Williams P. 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018), 2018, pp. 1–2. https://doi.org/10.1109/CPEM.2018.8501149
11. Kim M., Kim D., Woo B. C., Ha D., Lee S. U., Park H. S., Kim J., Lee K. C. International Journal of Precision Engineering and Manufacturing, 2017, vol. 18, pp. 945–953. https://doi.org/10.1007/s12541-017-0112-6
12. Baumann H., Eichenberger A., Cosandier F., Jeckelmann B., Clavel R., Reber D., Tommasini D. Metrologia. 2013, vol. 50, no. 3, 235. https://doi.org/10.1088/0026-1394%2F50%2F3%2F235
13. Li Z., Zhang Z., Lu Y., Hu P., Liu Y., Xu J., Bai Y., Zeng T., Wang G., You Q., Wang D., Li S., He Q., Tan J. Metrologia. 2017, vol. 54, no. 5, 763. https://doi.org/10.1088/1681-7575%2Faa7a65
14. Kamenskikh Yu. I., Snegov V. S. Reference standards-copies of mass unit: calibration 2020 using vacuum comparator CCL 1007. Measurement Standards. Reference Materials. 2021, vol. 17, no. 2, pp. 59–71. (In Russ.)] https://doi.org/10.20915/2077-1177-2021-17-2-59-71
Review
For citations:
Kamenskih Yu.I., Medvedevskih S.V., Shmigelskiy I.Y. Research on a watt balance experimental model based on a monolithic weighing converter. Izmeritel`naya Tekhnika. 2023;(1):31-35. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-1-31-35