Preview

Izmeritel`naya Tekhnika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Modulation transfer spectroscopy offset laser frequency stabilization laser

https://doi.org/10.32446/0368-1025it.2023-1-4-7

Abstract

One of the key parts of laser system of atomic gravimeter based on cold atoms is investigated. In order to construct optical system of atomic gravimeter the laser offset frequency stabilization is needed. Method for frequencydoubled fiber laser’s offset frequency stabilization is suggested and developed. This method is based on modulation transfer spectroscopy and the usage of fiber electro-optical modulator. The experimental scheme of this method is described. The error signals for offset frequency stabilization of frequency-doubled fiber laser are obtained. In order to maximize error signal’s amplitude, experimental parameters such as cell’s temperature, pump and probe beam intensities and electrooptical modulators signal amplitudes are optimized. The influence of polarization on error signal’s amplitude is investigated. It is shown that circular polarization allows to achieve error signal with higher amplitude. The achieved results can be applied to the construction of quantum gravimeter, quantum frequency standards and to the laser cooling experiments.

About the Authors

G. V. Osipenko
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Georgii V. Osipenko

Mendeleevo, Moscow Region



M. S. Aleynikov
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Mikhail S. Aleynikov

Mendeleevo, Moscow Region



A. G. Sukhoverskaya
Russian Metrological Institute of Technical Physics and Radio Engineering
Russian Federation

Alina G. Sukhoverskaya

Mendeleevo, Moscow Region



References

1. Aleynikov M. S., Baryshev V. N., Blinov I. Y., Kupalov D. S., Osipenko G. V. Measu- rement Techniques. 2020, vol. 63, no. 7, pp. 520–523. https://doi.org/10.1007/s11018-020-01818-9 ]

2. Kasevich M., Chu S. Physical Review Letters. 1991, vol. 67, no. 2, pp. 181–184. https://doi.org/10.1103/PhysRevLett.67.181

3. So C., Spong N. L., Möhl C., Jiao Y., Ilieva T., Adams C. S. Optics Letters. 2019, vol. 44, pp. 5374–5377. https://doi.org/10.1364/OL.44.005374

4. Fu Q., Li X., Meng Z., Feng Y. Optics Communications. 2018, vol. 44, pp. 132–137. https://doi.org/10.1016/j.optcom.2018.06.040

5. Peng W., Zhou L., Long S., Wang J., Zhan M. Optics Letters. 2014, vol. 39, pp. 2998–3001. https://doi.org/10.1364/OL.39.002998

6. Shirley J. H. Optics Letters. 1982, vol. 7, no. 11, pp. 537–539. https://doi.org/10.1364/OL.7.000537

7. McCarron D. J., King S. A., Cornish S. L. Measurement Science and Technology. 2008, vol. 19, no. 10, 105601. https://doi.org/10.1088/0957-0233/19/10/105601

8. Baryshev V. N., Osipenko G. V., Aleini- kov M. S., Blinov I. Y. Quantum Electronics. 2019, vol. 49, no. 3, pp. 283–287. (In Russ.)] https://doi.org/10.1070/QEL16875

9. Sun D., Zhou C., Zhou L., Wang J., Zhan M. Optics Express. 2016, vol. 24, no. 10, pp. 10649–10662. https://doi.org/10.1364/OE.24.010649

10. Mudarikwa L., Pahwa K., Goldwin J. Journal of Physics B: Atomic, Molecular and Optical Physics. 2012, vol. 45, no. 6, 065002. https://doi.org/10.1088/0953-4075/45/6/065002

11. Steck D. Rubidium 85 D Line Data, 2019, available at: https://steck.us/alkalidata/rubidium85numbers.pdf (accessed: 23.12.2022).

12. Steck D. A. Rubidium 87 D line data, 2001, available at: https://steck.us/alkalidata/rubidium87numbers.pdf (accessed: 23.12.2022).


Review

For citations:


Osipenko G.V., Aleynikov M.S., Sukhoverskaya A.G. Modulation transfer spectroscopy offset laser frequency stabilization laser. Izmeritel`naya Tekhnika. 2023;(1):4-7. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-1-4-7

Views: 345


ISSN 0368-1025 (Print)
ISSN 2949-5237 (Online)