

Modulation transfer spectroscopy offset laser frequency stabilization laser
https://doi.org/10.32446/0368-1025it.2023-1-4-7
Abstract
One of the key parts of laser system of atomic gravimeter based on cold atoms is investigated. In order to construct optical system of atomic gravimeter the laser offset frequency stabilization is needed. Method for frequencydoubled fiber laser’s offset frequency stabilization is suggested and developed. This method is based on modulation transfer spectroscopy and the usage of fiber electro-optical modulator. The experimental scheme of this method is described. The error signals for offset frequency stabilization of frequency-doubled fiber laser are obtained. In order to maximize error signal’s amplitude, experimental parameters such as cell’s temperature, pump and probe beam intensities and electrooptical modulators signal amplitudes are optimized. The influence of polarization on error signal’s amplitude is investigated. It is shown that circular polarization allows to achieve error signal with higher amplitude. The achieved results can be applied to the construction of quantum gravimeter, quantum frequency standards and to the laser cooling experiments.
About the Authors
G. V. OsipenkoRussian Federation
Georgii V. Osipenko
Mendeleevo, Moscow Region
M. S. Aleynikov
Russian Federation
Mikhail S. Aleynikov
Mendeleevo, Moscow Region
A. G. Sukhoverskaya
Russian Federation
Alina G. Sukhoverskaya
Mendeleevo, Moscow Region
References
1. Aleynikov M. S., Baryshev V. N., Blinov I. Y., Kupalov D. S., Osipenko G. V. Measu- rement Techniques. 2020, vol. 63, no. 7, pp. 520–523. https://doi.org/10.1007/s11018-020-01818-9 ]
2. Kasevich M., Chu S. Physical Review Letters. 1991, vol. 67, no. 2, pp. 181–184. https://doi.org/10.1103/PhysRevLett.67.181
3. So C., Spong N. L., Möhl C., Jiao Y., Ilieva T., Adams C. S. Optics Letters. 2019, vol. 44, pp. 5374–5377. https://doi.org/10.1364/OL.44.005374
4. Fu Q., Li X., Meng Z., Feng Y. Optics Communications. 2018, vol. 44, pp. 132–137. https://doi.org/10.1016/j.optcom.2018.06.040
5. Peng W., Zhou L., Long S., Wang J., Zhan M. Optics Letters. 2014, vol. 39, pp. 2998–3001. https://doi.org/10.1364/OL.39.002998
6. Shirley J. H. Optics Letters. 1982, vol. 7, no. 11, pp. 537–539. https://doi.org/10.1364/OL.7.000537
7. McCarron D. J., King S. A., Cornish S. L. Measurement Science and Technology. 2008, vol. 19, no. 10, 105601. https://doi.org/10.1088/0957-0233/19/10/105601
8. Baryshev V. N., Osipenko G. V., Aleini- kov M. S., Blinov I. Y. Quantum Electronics. 2019, vol. 49, no. 3, pp. 283–287. (In Russ.)] https://doi.org/10.1070/QEL16875
9. Sun D., Zhou C., Zhou L., Wang J., Zhan M. Optics Express. 2016, vol. 24, no. 10, pp. 10649–10662. https://doi.org/10.1364/OE.24.010649
10. Mudarikwa L., Pahwa K., Goldwin J. Journal of Physics B: Atomic, Molecular and Optical Physics. 2012, vol. 45, no. 6, 065002. https://doi.org/10.1088/0953-4075/45/6/065002
11. Steck D. Rubidium 85 D Line Data, 2019, available at: https://steck.us/alkalidata/rubidium85numbers.pdf (accessed: 23.12.2022).
12. Steck D. A. Rubidium 87 D line data, 2001, available at: https://steck.us/alkalidata/rubidium87numbers.pdf (accessed: 23.12.2022).
Review
For citations:
Osipenko G.V., Aleynikov M.S., Sukhoverskaya A.G. Modulation transfer spectroscopy offset laser frequency stabilization laser. Izmeritel`naya Tekhnika. 2023;(1):4-7. (In Russ.) https://doi.org/10.32446/0368-1025it.2023-1-4-7